版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省蛟河市第一中学校高二上数学期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b2.在长方体中,,,点分别在棱上,,,则()A. B.C. D.3.已知数列满足,且,为其前n项的和,则()A. B.C. D.4.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.5.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.26.函数的单调递减区间为()A. B.C. D.7.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.9.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.10.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.11.曲线在处的切线的斜率为()A.-1 B.1C.2 D.312.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.14.某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.15.已知数列则是这个数列的第________项.16.若抛物线:上的一点到它的焦点的距离为3,则__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)过原点O的圆C,与x轴相交于点A(4,0),与y轴相交于点B(0,2)(1)求圆C的标准方程;(2)直线l过B点与圆C相切,求直线l的方程,并化为一般式18.(12分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由19.(12分)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.20.(12分)求满足下列条件的圆锥曲线的标准方程:(1)已知椭圆的焦点在x轴上且一个顶点为,离心率为;(2)求一个焦点为,渐近线方程为的双曲线的标准方程;(3)抛物线,过其焦点斜率为1的直线交抛物线于A、B两点,且线段AB的中点的纵坐标为2.21.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.22.(10分)已知抛物线,直线交于、两点,且当时,.(1)求的值;(2)如图,抛物线在、两点处的切线分别与轴交于、,和交于,.证明:存在实数,使得.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.2、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D3、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.4、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.5、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A6、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.7、A【解析】根据得出,根据充分必要条件的定义可判断.【详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.8、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.9、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.10、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A11、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.12、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.14、(1)众数;平均数,中位数.(2).【解析】(1)按“众数,平均数,中位数”的公式求解.(2)由频率分布直方图得到各区间的频率,再用古典概型求解.【小问1详解】众数取频率分布直方图中最高矩形对应区间的中点75;平均数;因为,所以中位数在区间上,且中位数【小问2详解】由频率分布直方图得出在区间40,50)和90,100内的成绩样本数据分别有4个和2个,从6个样本选2个共有个结果,记事件A=“调查对象来自不同分组”,结果有所以.15、12【解析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:16、【解析】通过抛物线的定义列式求解【详解】根据抛物线的定义知,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设圆的标准方程为:,则分别代入原点和,得到方程组,解出即可得到;(2)由(1)得到圆心为,半径,由于直线过点与圆相切,则分别讨论斜率存在与否,运用直线与圆相切的条件:,解方程即可得到所求直线方程.【详解】(1)设圆C的标准方程为,则分别代入原点和,得到,解得则圆的标准方程为(2)由(1)得到圆心为,半径,由于直线过点与圆相切,当时,到的距离为2,不合题意,舍去;当斜率存在时,设,由直线与圆相切,得到,即有,解得,故直线,即为点睛:本题考查直线与圆位置关系,考查圆的方程的求法和直线与圆相切的条件,考查运算能力,属于中档题;圆的方程有一般形式与标准形式,在该题中利用待定系数法将其设为标准形式,列、解出方程组即可;当直线与圆相切时等价于圆心到直线的距离等于半径,已知直线上一点写出直线的方程需注意斜率不存在的情形.18、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离心率及短轴长求椭圆参数,即可得椭圆方程.(2)根据直线与椭圆的位置关系,将问题转为平行于直线且与椭圆相切的切线与直线最大距离,设直线方程联立椭圆方程根据求参数,进而判断点T的存在性,即可求最大距离.【小问1详解】由题设知:且,又,∴,故椭圆C的方程为.小问2详解】联立直线与椭圆,可得:,∴,即直线与椭圆相离,∴只需求平行于直线且与椭圆相切的切线与直线最大距离即为所求,令平行于直线且与椭圆相切的直线为,联立椭圆,整理可得:,∴,可得,当,切线为,其与直线距离为;当,切线为,其与直线距离为;综上,时,与椭圆切点与直线距离最大为.19、(1)(,).(2)【解析】(1)根据条件列关于P点坐标得方程组,解得结果,(2)先根据点到直线距离公式结合条件解得点M坐标,再建立的函数解析式,最后根据二次函数性质求最小值.【详解】解:(1)由已知可得点A(-6,0),F(4,0)设点P(,),则={+6,},={-4,},由已知可得则2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2)直线AP的方程是-+6=0.设点M(,0),则M到直线AP的距离是.于是=,又-6≤≤6,解得=2.椭圆上的点(,)到点M的距离为,则,由于-6≤≤6,∴当=时,取得最小值.【点睛】本题考查直线与椭圆位置关系,考查基本分析求解能力,属中档题.20、(1)(2)(3)【解析】(1)设椭圆的标准方程为,根据题意,进而结合求解即可得答案;(2)设双曲线的方程为,进而结合题意得,,再结合解方程即可得答案;、(3)根据题意设直线的方程为,进而与抛物线联立方程并消去得,再结合韦达定理得,进而得答案.【小问1详解】解:根据题意,设椭圆的标准方程为,因为顶点为,离心率为,所以,所以,所以椭圆的方程为【小问2详解】解:因为双曲线的一个焦点为,设双曲线的方程为,因为渐近线方程为,所以,因为所以,所以双曲线的标准方程为【小问3详解】解:由题知抛物线的焦点为,因为过抛物线焦点斜率为1的直线交抛物线于A、B两点,所以直线的方程为,所以联立方程,消去得,设,所以,因为线段AB的中点的纵坐标为2,所以,解得.所以抛物线的标准方程为.21、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.22、(1);(2)证明见解析.【解析】(1)将代入抛物线的方程,列出韦达定理,利用弦长公式可得出关于的等式,即可解得正数的值;(2)将代入,列出韦达定理,求出两切线方程,进而可求得点的坐标,分、两种情况讨论,在时,推导出、、重合,可得出;在时,求出的中点的坐标,利用斜率关系可得出,结合平面向量的线性运算可证得结论成立.【小问1详解】解:将代入得,设、,则,由韦达定理可得,则,解得或(舍),故.【小问2详解】解:将代入中得,设、,则,由韦达定理可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛羊零售商店购销合同
- 建筑垃圾处理弃土堆放合同
- 茶楼装修合同
- 标准合同复工协议
- 借款合同中的担保方式选择与分析
- 物流资源共享合作合同
- 银行环境清洁责任合同
- 租赁服务合同签订应注意的法律问题
- 购房合同签订流程详解
- 国际供应链合同
- 2024年02月天津市口腔医院派遣制人员招考聘用40人笔试历年(2016-2023年)真题荟萃带答案解析
- 声明书:个人婚姻状况声明
- 幼儿园年检整改专项方案
- 新管径流速流量对照表
- 20以内退位减法口算练习题100题30套(共3000题)
- 咯血病人做介入手术后的护理
- 境外投资环境分析报告
- 便携式气体检测仪使用方法课件
- 《压力平衡式旋塞阀》课件
- 信贷支持生猪养殖行业报告
- 物联网与人工智能技术融合发展年度报告
评论
0/150
提交评论