版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴市2025届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.2.已知等差数列满足,则等于()A. B.C. D.3.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题4.设函数在上可导,则等于()A. B.C. D.以上都不对5.已知随机变量服从正态分布,,则()A. B.C. D.6.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.7.若且,则下列不等式中一定成立的是()A. B.C. D.8.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离9.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.10.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.11.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.12.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数在R上恒有<2(x∈R),则不等式f(x)<2x+1的解集为______.14.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________15.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种16.一支车队有10辆车,某天下午依次出发执行运输任务.第一辆车于14时出发,以后每间隔10分钟发出一辆车.假设所有的司机都连续开车,并都在18时停下来休息.截止到18时,最后一辆车行驶了____小时,如果每辆车行驶的速度都是60km/h,这个车队各辆车行驶路程之和为______千米三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.18.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.19.(12分)已知等差数列满足:,(1)求数列的通项公式,以及前n项和公式;(2)若,求数列的前n项和20.(12分)已知函数,从下列两个条件中选择一个使得数列{an}成等比数列.条件1:数列{f(an)}是首项为4,公比为2的等比数列;条件2:数列{f(an)}是首项为4,公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列的前n项和.21.(12分)已知抛物线的焦点为,点在抛物线上,当以为始边,为终边的角时,.(1)求的方程(2)过点的直线交于两点,以为直径的圆平行于轴的直线相切于点,线段交于点,求的面积与的面积的比值22.(10分)已知函数(1)若在点处的切线与轴平行,求的值;(2)当时,求证:;(3)若函数有两个零点,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.2、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.3、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.4、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C5、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题6、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.7、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.8、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系9、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角10、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.11、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D12、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数g(x)=f(x)-2x-1,则原不等式可化为.利用导数判断出g(x)在R上为减函数,直接利用单调性解不等式即可【详解】令g(x)=f(x)-2x-1,则g(1)=f(1)-2-1=0.所以原不等式可化为.因为,所以g(x)在R上为减函数.由解得:x>1.故答案为:.14、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.15、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.16、①.2.5####②.1950【解析】通过分析,求出最后一辆车的出发时间,从而求出最后一辆车的行驶时间,这10辆车的行驶路程可以看作等差数列,利用等差数列求和公式进行求解.【详解】因为,所以最后一辆车出发时间为15时30分,则最后一辆车行驶时间为18-15.5=2.5小时,第一辆车行程为km,且从第二辆车开始,每辆车都比前一辆少走km,这10辆车的行驶路程可以看作首项为240,公差为-10的等差数列,则10辆车的行程路程之和为(km).故答案为:2.5,1950三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当时,,即,解得或,所以,解集为或.(2)因为在上恒成立,①当时,恒成立;②当时,,解得,综上,的取值范围为.18、(1)答案见解析(2)证明见解析【解析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即19、(1),(2)【解析】(1)由,,列出方程组,求得,即可求得数列的通项公式,利用公式可得.(2)由(1)求得,结合“裂项法”求和,即可求解.【详解】(1)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式.(2)由(1)知,可得,所以数列的前项和:.【点睛】关键点睛:本题主要考查了等差数列的通项公式的求解,以及“裂项法”求和的应用,解答本题的关键是将的通项裂成两项的差,利用裂项相消求和,属于中档题.20、(1)(2)【解析】(1)根据所给的条件分别计算后即可判断,再通过满足题意的求出通项;(2)由(1)可得,再通过错位相减法求和即可.【小问1详解】若选择条件1,则有,可得,不满足题意;若选择条件2,则有,可得,满足题意,故.【小问2详解】由(1)可得,所以………①因此有……….②①②可得,即,化简得.21、(1)(2)【解析】(1)过点作,垂足为,过点作,垂足为,根据抛物线的定义,得到,求得,即可求得抛物线的方程;(2)设直线的方程为,联立方程组求得,得到,由抛物线的定义得到,根据,求得,设,得到,进而求得,因为为的中点,求得,即可求解.【小问1详解】解:由题意,抛物线,可得其准线方程,如图所示,过点作,垂足为,过点作,垂足为,因为时,,可得,又由抛物线的定义,可得,解得,所以抛物线的方程为.【小问2详解】解:由抛物线,可得,设,因为直线的直线过点,设直线的方程为联立方程组,整理得,可得,则,因为为的中点,所以,由抛物线的定义得,设圆与直线相切于点,因为交于点,所以且,所以,即,解得,设,则,且,可得,因为,所以点为的中点,所以,又因为为的中点,可得,所以,即的面积与的面积的比值为.22、(1);(2)证明见解析;(3).【解析】(1)由可求得实数的值;(2)利用导数分析函数的单调性,求得,即可证得结论成立;(3)分析可知在上存在唯一的极值点,且,可得出,构造函数,分析函数的单调性,求得的取值范围,再构造,分析函数的单调性,求出的范围,即可得出的取值范围.【小问1详解】解:因为的定义域为,.由题意可得,解得.【小问2详解】证明:当时,,该函数的定义域为,,令,其中,则,故函数在上递减,因为,,所以,存在,使得,则,且,当时,,函数单调递增,当时,,函数单调递减,所以,,所以,当时,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2北京2024版物业公司转让合同:价格、流程与标的物
- 二零二五版自然人之间文化创意作品授权合同2篇
- 屋顶租赁违约金合同(2篇)
- 二零二五年度液化气站送气工劳动合同书3篇
- 二零二五版本二手房买卖合同含房屋交易资金监管条款3篇
- 二零二五年高端活动赞助广告发布合同模板3篇
- 二零二五年度离婚协议书起草与财务规划服务合同3篇
- 2025年度汽车租赁行业担保函制定与法律效力确认合同3篇
- 二零二五年车库购置与车位租赁及产权登记服务合同样本2篇
- 二零二五年污水处理厂污水处理能力提升合同3篇
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 山西省太原市重点中学2025届物理高一第一学期期末统考试题含解析
- 充电桩项目运营方案
- 2024年农民职业农业素质技能考试题库(附含答案)
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 2024年上海市中考语文试题卷(含答案)
- 幼儿园美术教育研究策略国内外
评论
0/150
提交评论