版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市第四中学2025届高一数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.已知角为第四象限角,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.设,,,则a,b,c的大小关系是()A. B.C. D.4.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则5.已知命题:,,则是()A., B.,C., D.,6.化简的结果是()A. B.1C. D.27.设平面向量满足,且,则的最大值为A.2 B.3C. D.8.函数的图象的一个对称中心为()A. B.C. D.9.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-10.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像在第___________象限.12.设函数,若实数满足,且,则的取值范围是_______________________13.若函数在内恰有一个零点,则实数a的取值范围为______14.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________15.已知向量,,若,,,则的值为__________16.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)18.化简或计算下列各式.(1);(2)19.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.20.命题p:方程x2+x+m=0有两个负数根;命题q:任意实数x∈R,mx2-2mx+1>0成立;若p与q都是真命题,求m取值范围.21.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为2、C【解析】根据三角函数的定义判断、的符号,即可判断.【详解】因为是第四象限角,所以,,则点位于第三象限,故选:C3、C【解析】根据幂函数和指数函数的单调性比较判断【详解】∵,,∴.故选:C4、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.5、D【解析】根据命题的否定的定义写出命题的否定,然后判断【详解】命题:,的否定是:,故选:D6、B【解析】利用三角函数的诱导公式化简求解即可.【详解】原式.故选:B7、C【解析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件8、C【解析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【点睛】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B10、C【解析】分别求两个样本的数字特征,再判断选项.【详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.12、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:13、【解析】根据实数a的正负性结合零点存在原理分类讨论即可.【详解】当时,,符合题意,当时,二次函数的对称轴为:,因为函数在内恰有一个零点,所以有:,或,即或,解得:,或,综上所述:实数a的取值范围为,故答案为:14、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.15、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题16、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)存在;,.【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式;(2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解.【小问1详解】解:因为为、的“函数”,所以①,所以因为为奇函数,为偶函数,所以,所以②联立①②解得,【小问2详解】解:假设存在实数、,使得为,的“函数”则①因为是偶函数,所以即,即,因为,整理得因为对恒成立,所②,因为,当且仅当,即时取等号所以,由于的值域为,所以,且又因为,所以,综上,存在,满足要求18、(1)(2)【解析】(1)根据诱导公式化简整理即可得答案;(2)根据二倍角公式和同角三角函数关系化简即可得答案.【小问1详解】解:【小问2详解】解:19、【解析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【点睛】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用20、【解析】根据判别式以及韦达定理即可求解.【详解】对于有两个负数根(可以为重根),即,并且由韦达定理,∴;对于恒成立,当时,符合题意;当时,则必定有且,得,所以;若p与q都是真命题,则.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源产业信托贷款合同模板2篇
- 2024版无财产离婚协议书自愿离婚协议书
- 2025年环保型装修垃圾清运及再生资源利用合同3篇
- 二零二四年土石方工程居间与专利技术许可合同3篇
- 2025年度电子商务交易安全认证服务合同2篇
- 2025年度材料回收利用与再生资源合同范本3篇
- 2024网络营销合作平台建设合同
- 2024论电子商务合同的成立
- 2025年度生物医药研发基地租赁合同3篇
- 2025年水电工程安装与资源综合利用合同范本
- 三年级上册语文作文课件-《我学会了……》(共15张PPT)-全国通用
- 气管切开病人的观察与护理【版直接用】课件
- 班组退场确认书(参考文本)
- 质量系统 GMP 实施指南
- 住房公积金缴存情况专项审计报告
- 猴痘病毒资料
- 《鼻部应用解剖》PPT课件
- 第二章 热力学基本定律
- 义务教育教科书英语Go for it七年级上册单词表
- 第一章 电力系统潮流计算1
- 粉末丁腈橡胶使用方法
评论
0/150
提交评论