版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省许汝平九校联盟2025届高一数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式恒成立,则的取值范围为()A. B.或C. D.2.下题中,正确的命题个数为()①函数的定义域为;②已知命题,则命题的否定为:;③已知是定义在[0,1]的函数,那么“函数在[0,1]上单调递减”是“函数在[0,1]上的最小值为f(1)”的必要不充分条件;④被称为“天津之眼”的天津永乐桥摩天轮,是一座跨河建造、桥轮合一的摩天轮假设“天津之眼”旋转一周需30分钟,且是匀速转动的,则经过5分钟,转过的角的弧度A.1 B.2C.3 D.43.如果,那么()A. B.C. D.4.,,,则的大小关系为()A. B.C. D.5.命题“”的否定为A. B.C. D.6.设,,定义运算“△”和“”如下:,.若正数,,,满足,,则()A.△,△ B.,C.△, D.,△7.已知函数的单调区间是,那么函数在区间上()A.当时,有最小值无最大值 B.当时,无最小值有最大值C.当时,有最小值无最大值 D.当时,无最小值也无最大值8.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.49.已知全集,则()A. B.C. D.10.已知函数,则A.最大值为2,且图象关于点对称B.周期为,且图象关于点对称C.最大值为2,且图象关于对称D.周期为,且图象关于点对称二、填空题:本大题共6小题,每小题5分,共30分。11.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.12.已知,且,则的最小值为__________.13.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.14.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.15.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____16.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知OPQ是半径为1,圆心角为2θ(θ为定值)的扇形,A是扇形弧上的动点,四边形ABCD是扇形内的内接矩形,记∠AOP=(0<<θ)(1)用表示矩形ABCD的面积S;(2)若θ=,求当取何值时,矩形面积S最大?并求出这个最大面积18.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值19.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.20.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.21.(1)求值:;(2)已知,化简求值:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.2、B【解析】对于①,求出函数的定义域即可判断;对于②,根据全称量词命题的否定为存在量词命题即可判断;对于③,根据充分条件和必要条件的定义,举出反例即可判断;对于④,计算出经过5分钟,转过的角的弧度即可判断.【详解】解:对于①,由,得,解得且,所以函数的定义域为,故①正确;对于②,命题,的否定为:,故②错误;对于③,若函数在[0,1]上单调递减,则函数在[0,1]上的最小值为f(1),若函数在[0,1]上的最小值为f(1),无法得出函数在[0,1]上单调递减,例如,函数在[0,1]上不单调,且函数在[0,1]上的最小值为f(1),所以“函数在[0,1]上单调递减”是“函数在[0,1]上的最小值为f(1)”的充分不必要条件,故③错误;对于④,根据题意经过5分钟,转过的角的弧度为,故④正确,所以正确的个数为2个.故选:B.3、D【解析】利用对数函数的单调性,即可容易求得结果.【详解】因为是单调减函数,故等价于故选:D【点睛】本题考查利用对数函数的单调性解不等式,属基础题.4、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.5、D【解析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【详解】命题“”的否定为“”故选D【点睛】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换6、D【解析】根据所给运算,取特殊值检验即可排除ACB,得到答案.【详解】令满足条件,则,可排除A,C;令满足。则,排除B;故选:D7、D【解析】依题意不等式的解集为(1,+∞),即可得到且,即,再根据二次函数的性质计算在区间(-1,2)上的单调性及取值范围,即可得到函数的最值情况【详解】因为函数的单调区间是,即不等式的解集为(1,+∞),所以且,即,所以,当时,在上满足,故此时为增函数,既无最大值也无最小值,由此A,B错误;当时,在上满足,此时为减函数,既无最大值也无最小值,故C错误,D正确,故选:D.8、B【解析】由图可知,故,选.9、C【解析】根据补集的定义计算可得;【详解】解:因为,所以;故选:C10、A【解析】,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A考点:三角函数的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.12、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.13、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:14、(2)(4)【解析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.15、【解析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:16、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)S=(0<<θ);(2)当α=时,S取得最大值为2﹣【解析】(1)由题意可求得∠ADO,△COD为等腰三角形,在△OAD中利用正弦定理求出AD,从而可用表示矩形ABCD的面积S;(2)由(1)可得,然后由的范围结合正弦函数的性质可求出其最大值【详解】解:(1)由题意可得AD∥OE∥CB,∴∠POE=∠PDA=θ,∴∠ODC==∠DCO,∠BOA=2θ﹣2,△COD为等腰三角形故AB=2sin(θ﹣),再由∠ADO==π﹣θ,△OAD中,利用正弦定理可得,化简可得AD=故矩形ABCD的面积S=f()=AB•AD=(0<<θ)(2)θ=,由(1)可得S=f()===再由0<<可得<2+<,故当2+=,即当=时,S=f()取得最大值为2﹣18、(1)(2)【解析】(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质19、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(2)根据题意可得f(x)>ax恒成立,转化为恒成立,将参数分分离出来,再利用均值不等式判断的范围即可【小问1详解】根据题意,函数为二次函数,其对称轴为.若为偶函数,则,解得,则在上先减后增,当时,函数取得最小值9,当时,函数取得最大值13,即函数在上的值域为;【小问2详解】由题意知时,恒成立,即.所以恒成立,因为,所以,当且仅当即时等号成立.所以,解得,所以a的取值范围是.20、(1);(2)=(2,3)或=(6,5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考驾照合同模板
- 脐橙购销合同范本
- 快递店面转让合同快递转让合同大全
- 《环境微生物实验》课件
- 2024年度大型科学仪器共享服务协议
- 财务预算报告范文
- 《MATLAB编程及应用》全套教学课件
- 财务报告分析范文
- 购买树苗合同范本
- 2024年度企业咨询服务与战略外包合同2篇
- DB2327T 097-2024 有机玉米生产技术规程
- 书法鉴赏学习通超星期末考试答案章节答案2024年
- 第八章食品良好生产规范(GMP)
- 学校消毒劳务合同协议书
- 2025届新高考生物-命题趋势分析及备考策略-课件
- NBA球星库里课件
- 2024届高考英语完形填空专题之答题技巧教学设计
- 2024年呼伦贝尔事业单位真题
- 人教版数学五年级上册《解方程(例4、5)》说课稿
- 操作系统大作业(含课程设计)
- 二手房买卖合同范本下载可打印
评论
0/150
提交评论