福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题含解析_第1页
福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题含解析_第2页
福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题含解析_第3页
福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题含解析_第4页
福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市一级达标校2025届高一数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”的否定为()A. B.C. D.2.已知函数,则不等式的解集为()A. B.C. D.3.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.4.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A. B.C. D.5.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.6.已知幂函数f(x)=xa的图象经过点P(2,),则函数y=f(x2)﹣2f(x)的最小值等于()A. B.C.1 D.﹣17.直线l的方程为Ax+By+C=0,当,时,直线l必经过A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限8.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm39.在区间上单调递减的函数是()A. B.C. D.10.“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点为_________________.12.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________13.设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“T—单调增函数”对于“T—单调增函数”,有以下四个结论:①“T—单调增函数”一定在D上单调递增;②“T—单调增函数”一定是“—单调增函数”(其中,且):③函数是“T—单调增函数”(其中表示不大于x的最大整数);④函数不“T—单调增函数”其中,所有正确的结论序号是______14.已知函数,则使不等式成立的的取值范围是_______________15.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______16.______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量(单位:)与时间(单位:)函数关系为,当消毒后,测量得药物释放量等于;而实验表明,当药物释放量小于对人体无害(1)求的值;(2)若使用该消毒剂对房间进行消毒,求对人体有害的时间有多长?18.已知二次函数,满足,.(1)求函数的解析式;(2)求在区间上的值域.19.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值20.已知函数在区间上有最大值5和最小值2,求、的值21.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】“若,则”的否定为“且”【详解】根据命题的否定形式可得:原命题的否定为“”故选:C2、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.3、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D4、A【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选A【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题5、B【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.6、D【解析】先由已知条件求得,再利用配方法求二次函数的最值即可得解.【详解】解:已知幂函数f(x)=xa的图象经过点P(2,),则,即,所以,所以,所以y=f(x2)﹣2f(x),当且仅当,即时取等号,即函数y=f(x2)﹣2f(x)的最小值等于,故选:D.【点睛】本题考查了幂函数解析式的求法,重点考查了二次函数求最值问题,属基础题.7、A【解析】把直线方程化为斜截式,根据斜率以及直线在y轴上的截距的符号,判断直线在坐标系中的位置【详解】当A>0,B<0,C>0时,直线Ax+By+C=0,即y=﹣x﹣,故直线的斜率﹣>0,且直线在y轴上的截距﹣>0,故直线经过第一、二、三象限,故选A【点睛】本题主要考查根据直线的斜截式方程判断直线在坐标系中的位置,属于基础题8、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.9、C【解析】依次判断四个选项的单调性即可.【详解】A选项:增函数,错误;B选项:增函数,错误;C选项:当时,,为减函数,正确;D选项:增函数,错误.故选:C.10、B【解析】根据充分条件和必要条件的概念,结合题意,即可得到结果.【详解】因为,所以“”是“”的必要不充分条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.12、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.13、②③④【解析】①③④选项可以举出反例;②可以进行证明.【详解】①例如,定义域为,存在,对于任意,都有,但在上不单调递增,①错误;②因为是单调增函数,所以存在,使得对于任意,都有,因为,,所以,故,即存在实数,使得对于任意,都有,故是单调增函数,②正确;③,定义域为,当时,对任意的,都有,即成立,所以是单调增函数,③正确;④当时,,若,则,显然不满足,故不是单调增函数,④正确.故答案为:②③④14、【解析】由奇偶性定义可判断出为偶函数,结合复合函数单调性的判断可得到在上单调递增,由偶函数性质知其在上单调递减,利用函数单调性解不等式即可求得结果.【详解】由,解得:或,故函数的定义域为,又,为上的偶函数;当时,单调递增,设,,在上单调递增,在上单调递增,在上单调递增,又为偶函数,在上单调递减;由可知,解得.故答案为:.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.15、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”16、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)把代入即可求得的值;(2)根据,通过分段讨论列出不等式组,从而求解.【详解】(1)由题意可知,故;(2)因为,所以,又因为时,药物释放量对人体有害,所以或,解得或,所以,由,故对人体有害的时间为18、(1)(2)【解析】(1)由可得,由可得出关于、的方程组,解出这两个未知数的值,可得出函数的解析式;(2)由二次函数的基本性质可求得函数在区间上的值域.【小问1详解】解:由可得,,由得,所以,解得,所以.【小问2详解】解:由(1)可得:,则的图象的对称轴方程为,,又因为,,所以,在区间上的值域为.19、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.20、,.【解析】利用对称轴x=1,[1,3]是f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论