版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌金东方高级中学2025届高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若cos(πA.-29C.-592.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.3.两直线2x+3y-k=0和x-ky+12=0的交点在y轴上,那么k的值是A.-24 B.6C.±6 D.±244.设,且,则等于()A.100 B.C. D.5.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.6.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定7.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.8.函数的零点所在区间为()A. B.C. D.9.已知点在第三象限,则角的终边位置在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.若集合,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________12.在对某工厂甲乙两车间某零件尺寸的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了甲车间10个零件,其尺寸的平均数和方差分别为12和4.5,抽取了乙车间30个零件,其平均数和方差分别为16和3.5,则该工厂这种零件的方差估计值为___________.(精确到0.1)13.函数,则________14.函数,若最大值为,最小值为,,则的取值范围是______.15.已知函数(1)当时,求的值域;(2)若,且,求的值;16.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)用,表示;(2)求18.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)19.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.20.已知函数是上的奇函数.(1)求实数a的值;(2)若关于的方程在区间上恒有解,求实数的取值范围.21.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】cos(π2-α)=sin2、B【解析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.3、C【解析】两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k即可【详解】∵两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k=±6故选C【点睛】本题考查了两条直线的交点坐标,考查了推理能力与计算能力,属于基础题4、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C5、C【解析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围6、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用7、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.8、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.9、B【解析】由所在的象限有,即可判断所在的象限.【详解】因为点在第三象限,所以,由,可得角的终边在第二、四象限,由,可得角的终边在第二、三象限或轴非正半轴上,所以角终边位置在第二象限,故选:B.10、C【解析】根据交集直接计算即可.【详解】因为,,所以,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】设铜球的半径为,则,得,故答案为.12、8【解析】设甲车间数据依次为,乙车间数据依次,根据两个车间的平均数和方差分别求出所有数据之和以及所有数据平方和即可得解.【详解】设甲车间数据依次为,乙车间数据依次,,,所以,,,所以这40个数据平均数,方差=6.75≈6.8.所以可以判定该工厂这种零点的方差估计值为6.8故答案为:6.813、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.14、【解析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围.【详解】,令,定义域为关于原点对称,∴,∴为奇函数,∴,∴,,由对勾函数的单调性可知在上单调递减,在上单调递增,∴,,,∴,∴,故答案为:.【点睛】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域上如果有最值,那么最大值和最小值一定是互为相反数.15、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则16、[-5,-3]【解析】作出的图象,如图,设与的交点横坐标为,则在时,总有,所以当时,有,,由,得;当当时,有,,由,得,综上,,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】先把指数式化为对数式求出的值,再利用对数的运算性质进行求解【小问1详解】解:,,,【小问2详解】解:,,,18、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,最大值为8740当时,当且仅当即x=100时,W有最大值,最大值为8990因为8740<8990,所以当2022年产量为100千台时,企业的利润最大,最大利润为8990万元.19、(1)(2)【解析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可得.当时,,即,所以.【点睛】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题.20、(1)(2)【解析】(1)利用奇偶性可得,求出,进行检验即可;(2)关于的方程在区间上恒有解等价于,即的取值范围是在区间上的值域.【详解】(1)∵函数是上的奇函数.∴,∴,当时,显然所以f(x)为奇函数,故;(2),即,∴,即的取值范围是在区间上的值域,令,则,∴,,,又在上单调递减,在上单调递增,∴,即,∴实数的取值范围.【点睛】本题考查函数的奇偶性的应用,考查函数与方程的关系,考查等价转化思想与推理能力,属于中档题.21、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024场地短期租赁合同协议书
- 2024商铺招商合同协议书范本
- 二零二四年度专利许可使用合同标的专利权保护协议
- 2024区域市场商品铺货合同范本版
- 2024年度舞台软装订购合同协议书2篇
- 2024版二手房购房定金合同3篇
- 2024版二手家具购销合同(含家具搬运服务)3篇
- 2024年双方同意离婚携带子女分割财产合同书版B版
- 2024住宅装饰装修施工合同
- 2024化妆品品牌授权合同版
- 教育管理与案例分析
- 学会有效解决职业困惑
- 2024年陕煤集团榆林化学有限责任公司招聘笔试参考题库含答案解析
- 2024年上海铁路局集团招聘笔试参考题库附带答案详解
- 导电油墨可行性报告
- 村监督委员会培训课件
- 起承转合的写作方法指导课件
- 无人驾驶环卫行业报告
- 骨关节炎的转录组学研究与基因调控机制
- 热处理行业前景分析
- 家长会示范课件培养孩子养成尊重劳动的习惯
评论
0/150
提交评论