第4章 图形的相似 北师大版数学九年级上册单元提升必刷卷(含答案)_第1页
第4章 图形的相似 北师大版数学九年级上册单元提升必刷卷(含答案)_第2页
第4章 图形的相似 北师大版数学九年级上册单元提升必刷卷(含答案)_第3页
第4章 图形的相似 北师大版数学九年级上册单元提升必刷卷(含答案)_第4页
第4章 图形的相似 北师大版数学九年级上册单元提升必刷卷(含答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【单元测试】第四章图形的相似(提升能力卷)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果线段,,且b是线段a和c的比例中项,那么(

)A. B. C. D.2.如图,在△ABC中,DE∥BC,AE=4,EC=6,AB=5,则BD的长为()A.1 B.2 C.3 D.43.下列图形中,不是相似图形的一组是(

)A.B.C. D.4.如图,是斜边上的高,则图中相似三角形的对数有()A.0对 B.1对 C.2对 D.3对5.如图,点O是四边形ABCD内一点,、、、分别是OA、OB、OC、OD上的点,且,若四边形的面积为12cm2,则四边形ABCD的面积为(

)A.18cm2 B.27cm2 C.36cm2 D.54cm26.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为()A.11.5米 B.11.75米 C.11.8米 D.12.25米7.如图,AC⊥BC,,D是AC上一点,连接BD,与∠ACB的平分线交于点E,连接AE,若,,则BC=(

)A. B.8 C. D.108.如图,点E是边长为8的正方形ABCD的边CD上一动点,连接AE,将线段AE绕点E逆时针旋转90°到线段EF,连接AF,BF,AF交边BC于点G,连接EG,当AF+BF取最小值时,线段EG的长为(

)A.8 B.7 C.9 D.9.如图,以C(0,1)为位似中心,在y轴右侧作ABC位似图形,使所作图形与原图形位似比为1:2,设点A的坐标为(-3,4),则点的坐标为(

)A. B. C. D.10.如图,正方形和正方形的顶点在同一条直线上,顶点在同一条直线上.O是的中点,的平分线过点D,交于点H,连接交于点M,连接交于点N.则的值为(

)A. B. C. D.二、填空题(本大题共8个小题,每题3分,共24分)11.如图,在线段上找到一个点,且,满足,设,则线段_________.12.如图是步枪在瞄准时的示意图,步枪上的准星宽度为,目标的正面宽度为,若从眼睛到准星的距离为,则眼睛到目标的距离为______m13.在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应的线段的比值为k,逆时针旋转一个角度θ,这种经过相似和旋转变化的图形变换叫做旋转相似变换(k,θ),O为旋转相似中心,k为相似比,△ABC是边长为1cm的等边三角形,将它作旋转相似变化A(,90°),则BD长___cm.14.如图,∠1=∠2,请你补充一个条件:_________,使△ABC∽△ADE.15.在和中,,则这两个三角形________相似三角形(填“是”或“不是”),根据是__________________________.16.如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,她调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条边DE=8cm,DF=10cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m.17.如图,已知点是的重心,过作的平行线,分别交于点、交于点;作,交于点,若的面积为18,则的面积为_______.18.如图所示,在平面直角坐标系中,已知点A(-4,2),B(-2,-2).以坐标原点O为位似中心把△AOB缩小得到△A1OB1,△A1OB1与△AOB的位似比为,则点A的对应点A1的坐标为_______.三、解答题(本题共8个小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图,用长为40cm的细铁丝围成一个矩形.(1)若这个矩形的面积等于,求的长度;(2)这个矩形的面积可能等于吗?若能,求出的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(与之比等于黄金比),求该矩形的面积.(结果保留根号)20.△ABC中,点D是BC边上的一点,点F在AD上,连接BF并延长交AC于点E;(1)如图1,若D为BC的中点,,求证:AF=FD;(2)尺规作图:在图2中,请利用圆规和无刻度的直尺在AC上找一点E,使得;(3)若F为AD的中点,设,请求出m、n之间的等量关系.21.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为;(2)A4纸与A5纸是否为相似图形?请说明理由.22.如图,正方形ABCD的边长为8,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)请判断△PFA与△ABE是否相似,并说明理由;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.23.某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB)的高度为4.8米,右侧路灯(CD)的高度为6.4米,两路灯之间的距离(BD)为12米,已知小明的身高(EF)为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F是BD的中点)时,小明测得自己在两路灯下的影长FP=米,FQ=米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP=FQ),请问时小明站在什么位置,为什么?24.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片折叠,使顶点落在边上的点处(点与、不重合),折痕为,折叠后边落在的位置,与交于点.(1)观察操作结果,在图1中找到一个与相似的三角形,并证明你的结论;(2)当点在边的什么位置时,与面积的比是?请写出求解过程;(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片折叠,使顶点落在边上的点处(点与、不重合),折痕为,当点在边的什么位置时,与面积的比是?请写出求解过程.25.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.26.【背景】如图1,在△ABC中,AB=AC,过点A的直线MN∥BC,点D是直线MN上的一动点,将射线DB绕着点D逆时针旋转,交线段AC于点P,使∠BDP=∠BAC,试说明:DB=DP.小丽提出了自己的想法:如图2在线段AB上取一点F,使DA=DF,通过证明△BDF≌△PDA可以解决问题.【尝试】①请你帮助小丽完成说理过程.②若AC=6,BC=4,AD=3,求AP的长.【拓展】如图3,过点A的直线MN∥BC,AB=3cm,AC=4cm,点D是直线MN上一点,点P是线段AC上的一点,连接DP,使得∠BDP=∠BAC,求的值.

【单元测试】第四章图形的相似(提升能力卷)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果线段,,且b是线段a和c的比例中项,那么(

)A. B. C. D.【答案】D【分析】根据线段比例中项的概念可得,再根据,,可得,即可求出答案.【详解】解:∵线段b是a、c的比例中项,∴,∴.∵,,∴,∴.故选:D.【点睛】本题考查了比例线段,关键是根据比例中项的概念列出算式.注意线段不能是负数.2.如图,在△ABC中,DE∥BC,AE=4,EC=6,AB=5,则BD的长为()A.1 B.2 C.3 D.4【答案】C【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【详解】解:,,即,解得:,故选:C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.下列图形中,不是相似图形的一组是(

)A.B.C. D.【答案】D【分析】根据相似图形的定义,对各选项进行一一分析,即可得出结论.【详解】解:A.两个图形的形状相同,符合相似形的定义,此选项不符合题意;B.两个图形的形状相同,符合相似形的定义,此选项不符合题意;C.两个图形的形状相同,符合相似形的定义,此选项不符合题意;D.形状不相同,不符合相似形的定义,此选项符合题意.故选:D.【点睛】本题考查了相似图形的定义,掌握相似图形的定义并能结合具体图形进行准确判断是解题的关键.4.如图,是斜边上的高,则图中相似三角形的对数有()A.0对 B.1对 C.2对 D.3对【答案】D【分析】直角三角形斜边上的高线分原三角形所得到的两个三角形与原三角形相似,由此即可解答.【详解】由题意得:△ADC∽△ACB;△ADC∽△CDB;△CDB∽△ACB.故选D.【点睛】本题解决的关键是熟知直角三角形斜边上的高线分原三角形所得到的了两个三角形与原三角形相似这一定理.5.如图,点O是四边形ABCD内一点,、、、分别是OA、OB、OC、OD上的点,且,若四边形的面积为12cm2,则四边形ABCD的面积为(

)A.18cm2 B.27cm2 C.36cm2 D.54cm2【答案】B【分析】利用位似图形的定义得出四边形A′B′C′D′与四边形ABCD的位似比为:2:3,进而得出面积比,即可得出四边形ABCD的面积.【详解】解:∵OA′:A′A=OB′:B′B=OC′:C′C=OD′:D′D=2:1,∴OA′:OA=OB′:OB=OC′:COC=OD′:DO=2:3,∴四边形A′B′C′D′与四边形ABCD的位似比为:2:3,∴四边形A′B′C′D′与四边形ABCD的面积比为:4:9,∵四边形A′B′C′D′的面积为12cm2,∴四边形ABCD的面积为:27cm2.故选:B.【点睛】本题主要考查了位似图形的性质,得出两四边形的相似比是解题关键.6.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为()A.11.5米 B.11.75米 C.11.8米 D.12.25米【答案】C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,∵同一时刻物高与影长成正比例,∴AE:ED=1:0.4,即AE:4.6=1:0.4,∴AE=11.5米,∴AB=AE+EB=11.5+0.3=11.8米,∴树的高度是11.8米,故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.7.如图,AC⊥BC,,D是AC上一点,连接BD,与∠ACB的平分线交于点E,连接AE,若,,则BC=(

)A. B.8 C. D.10【答案】B【分析】过作垂足分别为由角平分线的性质可得:利用,可以求得进而求得,利用面积公式列方程求解即可.【详解】解:如图,过作垂足分别为平分,设,,(负根舍去)故选:B.【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.8.如图,点E是边长为8的正方形ABCD的边CD上一动点,连接AE,将线段AE绕点E逆时针旋转90°到线段EF,连接AF,BF,AF交边BC于点G,连接EG,当AF+BF取最小值时,线段EG的长为(

)A.8 B.7 C.9 D.【答案】D【分析】过点F作FP⊥CD交DC的延长线于点P,作直线CF,首先证明△PEF≌△DAE,得PF=DE,PE=AD,再证明点F在∠BCP的平分线上,作点B关于直线CF的对称点M,连接AM交直线CF于点F,此时,AF+BF最小,设DE=x,由图1知,PE=PC=DE=x,则PM=CM−PC=8−x,由△MPF∽△MCG,得到对应边成比例即可求出x的值,再利用勾股定理即可解决问题.【详解】解:如图,过点F作FP⊥CD交DC的延长线于点P,作直线CF,∵四边形ABCD是正方形,∴AB=AD=BC=CD=8,∠D=∠BCD=90°,AB∥CD,∴∠D=∠EPF=90°,∴∠AED+∠DAE=90°,由旋转知,AE=FE,∠AEF=90°,∴∠AED+∠PEF=90°,∴∠PEF=∠DAE,在△PEF与△DAE中,∴△PEF≌△DAE(AAS),∴PF=DE,PE=AD,∴PE=CD,∴PE−CE=CD−CE,∴PC=DE,∵FP⊥CD,∴∠PCF=45°,∴点F在∠BCP的平分线上,如图2,作点B关于直线CF的对称点M,连接AC、BM,连接AM交直线CF于点F,此时,AF+BF最小,∵点B关于直线CF的对称点M,∴△BFC≌△MFC(ASA),∴CM=BC=AB=8,∵ABCD,∴四边形ABMC为平行四边形,∴BG=CG=BC=4,设DE=x,由图1知,PE=PC=DE=x,∴PM=CM−PC=8−x,∵∠BCM=∠FPM=90°,∴PFBC,∴△MPF∽△MCG,∴,即,解得:x=,∴CE=CD−DE=8−,∴,故选:D.【点睛】本题主要考查了正方形的性质,平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,综合性较强,要求学生有较强的识图能力.9.如图,以C(0,1)为位似中心,在y轴右侧作ABC位似图形,使所作图形与原图形位似比为1:2,设点A的坐标为(-3,4),则点的坐标为(

)A. B. C. D.【答案】B【分析】过点作轴于点,过点作于点,根据位似比等于相似比,可得,设,根据相似三角形的性质即可求解.【详解】解:如图,过点作轴于点,过点作于点,ABC位似图形,位似比为1:2,,,,,,设,C(0,1),(-3,4),则,,解得,.故选B.【点睛】本题考查了位似图形的性质,相似三角形的性质与判定,掌握位似三角形的性质是解题的关键.10.如图,正方形和正方形的顶点在同一条直线上,顶点在同一条直线上.O是的中点,的平分线过点D,交于点H,连接交于点M,连接交于点N.则的值为(

)A. B. C. D.【答案】C【分析】由正方形的性质,利用“SAS”易证,得出,从而可求出,即证明.利用“ASA”结合角平分线的定义可证明,得出.结合中位线的性质,可证明,从而证明,.得出,.设,正方形的边长是,则,再代入,解得:,(舍去),从而求出.【详解】解:∵四边形和四边形是正方形,.(SAS),.,.,.平分.,(ASA)..又是的中点,.,.,.设,正方形的边长是,则∴,,即,解得,(舍去),则.故选C.【点睛】本题考查正方形的性质,三角形全等的判定和性质,角平分线的定义,三角形中位线的性质,相似三角形的判定和性质等知识,较难,熟练掌握上述知识是解题关键.二、填空题(本大题共8个小题,每题3分,共24分)11.如图,在线段上找到一个点,且,满足,设,则线段_________.【答案】【分析】设AC的长为xm,则BC=(1﹣x)m,代入求解即可.【详解】解:设AC的长为xm,则BC=(1﹣x)m,∵,∴,∴,解得:,(不合题意,舍去),∴,故答案为:.【点睛】本题考查成比例线段和解一元二次方程,设出未知数,根据题意列方程是解题的关键.12.如图是步枪在瞄准时的示意图,步枪上的准星宽度为,目标的正面宽度为,若从眼睛到准星的距离为,则眼睛到目标的距离为______m【答案】125【分析】根据平行线分线段成比例可得出,代入数据,求出OF的值即可.注意统一单位.【详解】,.,,即,解得.故答案为:.【点睛】本题考查平行线分线段成比例的应用.在解答此题时要注意单位的换算,这是此题的易错点.13.在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应的线段的比值为k,逆时针旋转一个角度θ,这种经过相似和旋转变化的图形变换叫做旋转相似变换(k,θ),O为旋转相似中心,k为相似比,△ABC是边长为1cm的等边三角形,将它作旋转相似变化A(,90°),则BD长___cm.【答案】2【分析】已知△ABC旋转相似变换A(,90°),得到△ADE,可推出∠BAD=90°,利用勾股定理可求出BD的值.【详解】解:将△ABC作旋转相似变换A(,90°),则cm,∠BAD=90°,由勾股定理得:BD==2(cm).故答案为:2.【点睛】本题考查了旋转的性质、相似三角形的性质及勾股定理,理解题目中的旋转相似是解题的关键.14.如图,∠1=∠2,请你补充一个条件:_________,使△ABC∽△ADE.【答案】(答案不唯一)【分析】相似三角形的判定问题,由题意,∠BAC=∠DAE,所以再加一对应角相等即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE,要使△ABC∽△ADE,只需再有一对应角相等即可,∴添加的条件为∠B=∠D.故答案为:.【点睛】本题主要考查三角形相似的判定,熟练掌握相似三角形的性质及判定定理是解题的关键.15.在和中,,则这两个三角形________相似三角形(填“是”或“不是”),根据是__________________________.【答案】

两角分别相等的两个三角形相似【分析】根据相似三角形的判定定理求解即可.【详解】解:在中,∴=45°∴在和中,,∴~故答案为是;两角分别相等的两个三角形相似【点睛】此题主要考查了形似三角形的判定定理,熟练掌握判定定理是解答本题的关键.16.如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,她调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条边DE=8cm,DF=10cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m.【答案】7.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小颖同学的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=8cm=0.08m,DF=10cm=0.1m,AC=1.5m,CD=8m,∴由勾股定理求得EF=0.06m,∴,∴BC=6米,∴AB=AC+BC=1.5+6=7.5(米).故答案为:7.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.17.如图,已知点是的重心,过作的平行线,分别交于点、交于点;作,交于点,若的面积为18,则的面积为_______.【答案】8【分析】根据点是的重心,得出,根据得出,,由,,得出,,根据相似三角形的性质求得,,进而根据,即可求解.【详解】解:如图,延长交于.点是的重心,,,,,,,,,,,,,.故答案为:8.【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,三角形重心的性质,掌握相似三角形的性质与判定是解题的关键.18.如图所示,在平面直角坐标系中,已知点A(-4,2),B(-2,-2).以坐标原点O为位似中心把△AOB缩小得到△A1OB1,△A1OB1与△AOB的位似比为,则点A的对应点A1的坐标为_______.【答案】(-2,1)或(2,-1)【分析】根据在平面直角坐标系中,以原点为位似中心的位似图形,如果相似比为k,那么位似图形对应点的坐标的比等于k或-k计算,得到答案.【详解】解∶∵以坐标原点O为位似中心把△AOB缩小得到,与△AOB的位似比为,∴点的对应点的横纵坐标与点A的横纵坐标的比值为或,∵A(-4,2),∴的坐标为或,即(-2,1)或(2,-1),故答案为∶(-2,1)或(2,-1).【点睛】本题考查的是位似变换的概念和性质,掌握在平面直角坐标系中,以原点为位似中心的位似图形,如果相似比为k,那么位似图形对应点的坐标的比等于k或-k是解题的关键.三、解答题(本题共8个小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图,用长为40cm的细铁丝围成一个矩形.(1)若这个矩形的面积等于,求的长度;(2)这个矩形的面积可能等于吗?若能,求出的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(与之比等于黄金比),求该矩形的面积.(结果保留根号)【答案】(1)11cm;(2)不能,理由见解析;(3)【分析】(1)设,则,根据矩形面积公式得到,再解方程得,,由于,则可得到的长为;(2)与(1)一样得到方程,整理得,计算判别式的值,根据判别式的意义得到方程没有实数解,于是可判断这个矩形的面积可能等于;(3)设,则,根据黄金分割的定义得,解得,再计算出,然后计算矩形的面积.【详解】解:(1)设,则,根据题意得,整理得,解得,,当时,;当时,,而,所以,即的长为;(2)不能.理由如下:设,则,根据题意得,整理得,因为△,所以方程没有实数解,所以这个矩形的面积不可能等于;(3)设,则,根据题意得,解得,则,所以矩形的面积.【点睛】本题考查了一元二次方程的应用和黄金分割:把线段分成两条线段和,且使是和的比例中项(即,叫做把线段黄金分割,点叫做线段的黄金分割点.20.△ABC中,点D是BC边上的一点,点F在AD上,连接BF并延长交AC于点E;(1)如图1,若D为BC的中点,,求证:AF=FD;(2)尺规作图:在图2中,请利用圆规和无刻度的直尺在AC上找一点E,使得;(3)若F为AD的中点,设,请求出m、n之间的等量关系.【答案】(1)证明见解析,(2)作图见解析,(3)【分析】(1)作DG∥BE交AC于G,列出比例式即可证明;(2)作△ABC的中线AD,再作AD中点,连接BF并延长交AC于点E即可;(3)作DG∥BE交AC于G.根据平行得出比例式,根据F为AD的中点,得出m、n之间的等量关系即可.【详解】(1)证明:作DG∥BE交AC于G,∵DG∥BE,BD=CD,∴==1,∴EG=CG,∵EF∥DG,∴=,∵,EG=GC,∴=1,∴=1.∴AF=FD;(2)作△ABC的中线AD,再作AD中点,连接BF并延长交AC于点E,点E即是所求;(3)作DG∥BE交AC于G.∵DG∥BE,∴==,∵,设AC=a,AE=an,EC=a-an,EG=m(a-an),∵EF∥DG,∴=,∵F为AD的中点,∴即.【点睛】本题考查了平行线分线段成比例定理,解题关键是恰当作平行线,利用比例式解决问题.21.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为;(2)A4纸与A5纸是否为相似图形?请说明理由.【答案】(1);(2)相似,理由见解析【分析】(1)根据边的关系得出比例等式解答即可;(2)根据相似图形的判定解答即可.【详解】解:(1)如图1,设AB=x,由上面两个图,由翻折的性质我们知道,∠ACF=∠HDF,∠ACB=∠HDB,∠ECF=45°,∴∠BCF=∠BDF=90°,又∵∠ACE=∠ACB+∠ECB=∠BCF=∠BCE+∠ECF,∴∠ACB=∠ECF=45°,∴BC=x,∴BD=BC=x,AD=AB+BD=(+1)x,∴EF=CE=AD=(+1)x,∵DE=AC=AB=x,∴DF=DE+EF=(+2)x,∴,故答案为:.(2)由(1)知:A5纸长边为A4纸短边,长为(+1)x,A5纸短边长为()x,∴对A5纸,长边:短边,∴A4纸与A5纸相似.【点睛】此题考查了相似图形,关键是根据相似图形判断和性质解答.22.如图,正方形ABCD的边长为8,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)请判断△PFA与△ABE是否相似,并说明理由;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【答案】(1)见解析;(2)存在,x的值为4或20.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=4,即x=4.如图,延长AD至点P,作PF⊥AE于点F,连接PE,若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=,∴EF=AE=.∵,∴PE=20,即x=20.∴满足条件的x的值为4或20.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线.23.某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB)的高度为4.8米,右侧路灯(CD)的高度为6.4米,两路灯之间的距离(BD)为12米,已知小明的身高(EF)为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F是BD的中点)时,小明测得自己在两路灯下的影长FP=米,FQ=米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP=FQ),请问时小明站在什么位置,为什么?【答案】(1)3,2(2)离B地(或离D地),理由见解析【分析】(1)通过证明,,再根据相似三角形的性质进行求解即可;(2)由(1)得,,,设,可求出,求出x的值,即可求解.【详解】(1)解:由题意得,,,,,点F是BD的中点,,,解得;,,,点F是BD的中点,,,解得;故答案为:3;2;(2)小明站在离B点米处的位置,理由如下:由(1)得,,,,设,,,,,解得,,所以,小明站在离B点米处的位置.【点睛】本题考查了相似三角形的判定和性质,准确理解题意,熟练掌握知识点是解题的关键.24.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片折叠,使顶点落在边上的点处(点与、不重合),折痕为,折叠后边落在的位置,与交于点.(1)观察操作结果,在图1中找到一个与相似的三角形,并证明你的结论;(2)当点在边的什么位置时,与面积的比是?请写出求解过程;(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片折叠,使顶点落在边上的点处(点与、不重合),折痕为,当点在边的什么位置时,与面积的比是?请写出求解过程.【答案】(1),证明见解析(2)当时,与面积的比是,求解过程见解析(3)当时,与面积的比是,求解过程见解析【分析】(1)先根据正方形的性质可得,再根据折叠的性质可得,从而可得,然后根据相似三角形的判定即可得;(2)先根据相似三角形的性质可得,设,则,,,再根据折叠的性质可得,然后在中,利用勾股定理求出的值,由此即可得;(3)先根据相似三角形的判定证出,根据相似三角形的性质可得,设,则,,,从而可得,,再根据建立方程,解方程可得的值,由此即可得.【详解】(1)解:,证明如下:四边形是正方形,,,由折叠的性质得:,,,在和中,,.(2)解:,,,正方形的边长为5,,设,则,,,由折叠的性质得:,在中,,即,解得,,当时,,即点与点重合,不符合题意,舍去,当时,,符合题意;故当时,与面积的比是.(3)解:是边长为5的等边三角形,,,由折叠的性质得:,,,,,,与面积的比是,,设,则,,,,,,,解得,,即当时,与面积的比是.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、等边三角形的性质、折叠的性质、一元二次方程的应用等知识点,熟练掌握相似三角形的判定与性质是解题关键.25.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.【答案】(1)(2,﹣2)(2)见解析(3)7.5【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论