2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题【含答案】_第1页
2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题【含答案】_第2页
2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题【含答案】_第3页
2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题【含答案】_第4页
2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年江苏省句容市华阳片九年级数学第一学期开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.12、(4分)已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE3、(4分)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为()A.(﹣1,2) B.(2,0) C.(2,1) D.(2,﹣1)4、(4分)如图,折线ABCDE描述了一汽车在某一直路上行驶时汽车离出发地的距离s(千米)和行驶时间t(小时)间的变量关系,则下列结论正确的是()A.汽车共行驶了120千米B.汽车在行驶途中停留了2小时C.汽车在整个行驶过程中的平均速度为每小时24千米D.汽车自出发后3小时至5小时间行驶的速度为每小时60千米5、(4分)如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是()A.图1中BC的长是4厘米B.图2中的a是12C.图1中的图形面积是60平方厘米D.图2中的b是196、(4分)如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为()A.5.5 B.5 C.6 D.6.57、(4分)在下列各式由左到右的变形中,不是因式分解的是()A. B.C. D.8、(4分)下列运算中正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,点D,E分别是BC,AC的中点,AB=8,则DE的长为________.10、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________11、(4分)若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.12、(4分)用反证法证明“如果,那么.”是真命题时,第一步应先假设________

.13、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.三、解答题(本大题共5个小题,共48分)14、(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数:当x≥0时,它们对应的函数值相等,我们把这样的两个函数称作互为友好函数,例如:一次函数y=x-2,它的友好函数为y=-x+2(x<0)(1)直接写出一次函数y=-2x+1的友好函数.(2)已知点A(2,5)在一次函数y=ax-1的友好函数的图象上,求a的值.(3)已知点B(m,32)在一次函数y=12x-1的友好函数的图象上,求m15、(8分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若AC=4,AB=5,求菱形AECF的面积.16、(8分)如图,已知A(-4,0)、B(0,2)、C(6,0),直线AB与直线CD相交于点D,D点的横纵坐标相同;(1)求点D的坐标;(2)点P从O出发,以每秒1个单位的速度沿x轴正半轴匀速运动,过点P作x轴的垂线分别与直线AB、CD交于E、F两点,设点P的运动时间为t秒,线段EF的长为y(y>0),求y与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,直线CD上是否存在点Q,使得△BPQ是以P为直角顶点的等腰直角三角形?若存在,请求出符合条件的Q点坐标,若不存在,请说明理由.17、(10分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.18、(10分)解方程:(1)2x22x50(2)4x(2x1)3(2x1)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为______.20、(4分)如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结,下列结论:①.;②.;③..其中,正确的结论有__________________.(填上你认为正确的序号)21、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.22、(4分)扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为.23、(4分)如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是_____.二、解答题(本大题共3个小题,共30分)24、(8分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)25、(10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2;(3)若△A2B2C2和△A1B1C关于点P中心对称,请直接写出旋转中心P的坐标.26、(12分)如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.(1)求证:.(2)若,求的度数.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OB于E,

∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,

∴PE=PD,

∵PC∥OA,

∴∠BCP=∠AOB=2∠BOP=30°

∴在Rt△PCE中,PE=12PC=12×4=2,

故选本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.2、C【解析】

根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.3、D【解析】

利用网格特点和旋转的性质画出正方形ABCD绕D点顺时针方向旋转90°后所得的正方形CEFD,则可得到C点的对应点的坐标.【详解】如图,正方形ABCD绕D点顺时针方向旋转90°后得到正方形CEFD,则C点旋转后的对应点为F(2,﹣1),故选D.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.4、D【解析】

根据观察图象的横坐标、纵坐标,可得行驶的路程与时间的关系,根据路程与时间的关系,可得速度.【详解】A、由图象可以看出,最远处到达距离出发地120千米处,但又返回原地,所以行驶的路程为240千米,错误,不符合题意;B、停留的时候,时间增加,路程不变,所以停留的时间为2-1.5=0.5小时,错误,不符合题意;C、平均速度为总路程÷总时间,总路程为240千米,总时间为5小时,所以平均速度为240÷5=48千米/时,错误,不符合题意;D、汽车自出发后3小时至5小时间行驶的速度为120÷(5-3)=60千米/时,正确,符合题意,故选D.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决;用到的知识点为:平均速度=总路程÷总时间.5、C【解析】试题分析:根据图示可得BC=4×2=8厘米;图2中a=6×8÷2=24;图1中的面积为60平方厘米;图2中的b是17.考点:函数图象的性质.6、A【解析】

连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.7、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是因式分解,故A不符合题意;B、是整式的乘法,故B符合题意;C、是因式分解,故C不符合题意;D、是因式分解,故D不符合题意;故选:B.本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.8、B【解析】

根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.【详解】A.不能合并,所以A选项错误;B.原式=,所以B选项正确;C.原式=,所以C选项错误;D.原式=3,所以D选项错误。故选B.此题考查二次根式的混合运算,掌握运算法则是解题关键二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】【分析】根据三角形的中位线定理进行求解即可得.【详解】∵D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE=AB==1,故答案为:1.【点睛】本题考查了三角形中位线定理,熟记定理的内容是解题的关键.10、12【解析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,11、-1【解析】

根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.【详解】解:根据题意知,且,解得:且,则非正整数k的值是,故答案为:.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.12、a≥0【解析】

用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【详解】解:“如果,那么.”是真命题时

,用反证法证明第一步应假设.故答案为:本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.13、1【解析】

由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=2x-1(x<0)-2x+1(x≥0);(2)2;(3)-1【解析】

(1)根据友好函数的定义解答即可;(2)因为-2<0,所以把A(-2,5)代入y=-ax+1中即可求得a的值;(3)分m<0和m≥0两种情况求m的值即可.【详解】(1)y=-2x+1的友好函数为y=2x-1(x<0)(2)解:因为-2<0,所以把A(-2,5)代入y=-ax+1中得,-a×(-2)+1=5,∴a=2;(3)当m<0时,把B(m,32)代入y=-32=-∴m=-1;当m≥0时,把B(m,32)代入y=32=∴m=5本题是阅读理解题,根据题意正确理解友好函数的定义是解决问题的关键.15、(1)见解析;(2)10.【解析】

(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;(2)可求S△ABC=12AB×AC=10,即可求菱形AECF【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E,F分别是边BC,AD上的中点∴AF∥EC,AF=EC∴四边形AECF是平行四边形.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=12∴平行四边形AECF是菱形.(2)∵∠BAC=90°,AB=5,AC=4,∴S△ABC=12∵点E是BC的中点,∴S△AEC=12S△∵四边形AECF是菱形∴四边形AECF的面积=2S△AEC=10.本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.16、(1)D(4,4);(2)y,t的取值范围为:0≤t<4或t>4;(3)存在,其坐标为(,)或(14,-16),见解析.【解析】

(1)根据条件可求得直线AB的解析式,可设D为(a,a),代入可求得D点坐标;(2)分0≤t<4、4<t≤6和t>6三种情况分别讨论,利用平行线分线段成比例用t表示出PE、PF,可得到y与t的函数关系式;(3)分0<t<4和t>4,两种情况,过Q作x轴的垂线,证明三角形全等,用t表示出Q点的坐标,代入直线CD,可求得t的值,可得出Q点的坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,将A(-4,0)、B(0,2)两点代入,解得,k=,b=2,∴直线AB解析式为y=x+2,∵D点横纵坐标相同,设D(a,a),∴a=a+2,∴D(4,4);(2)设直线CD解析式为y=mx+n,把C、D两点坐标代入,解得m=-2,n=12,∴直线CD的解析式为y=-2x+12,∴AB⊥CD,当

0≤t<4时,如图1,设直线CD于y轴交于点G,则OG=12,OA=4,OC=6,OB=2,OP=t,∴PC=6-t,AP=4+t,∵PF∥OG,,,,,当4<t≤6时,如图2,同理可求得PE=2+,PF=12-2t,此时y=PE-PF=t+2−(−2t+12)=t−10,当t>6时,如图3,同理可求得PE=2+,PF=2t-12,此时y=PE+PF=t-10;综上可知y,t的取值范围为:0≤t<4或t>4;(3)存在.当0<t<4时,过点Q作QM⊥x轴于点M,如图4,∵∠BPQ=90°,∴∠BPO+∠QPM=∠OBP+∠BPO=90°,∴∠OPB=∠QPM,在△BOP和△PMQ中,∴△BOP≌△PMQ(AAS),∴BO=PM=2,OP=QM=t,∴Q(2+t,t),又Q在直线CD上,∴t=-2(t+2)+12,∴t=,∴Q(,);当t>4时,过点Q作QN⊥x轴于点N,如图5,同理可证明△BOP≌△PNQ,∴BO=PN=2,OP=QN=t,∴Q(t-2,-t),又∵Q在直线CD上,∴-t=-2(t-2)+12,∴t=16,∴Q(14,-16),综上可知,存在符合条件的Q点,其坐标为(,)或(14,-16).本题主要考查待定系数法求函数解析式和平行线分线段成比例、等腰直角三角形的性质、全等三角形的判定和性质等知识点的综合应用.求得点的坐标是利用待定系数法的关键,在(2)中利用t表示出相应线段,化动为静是解题的关键,在(3)中构造三角形全等是解题的关键.本题难度较大,知识点较多,注意分类讨论思想的应用.17、详见解析.【解析】

首先判定四边形AEFD是平行四边形,然后证明DF=EF,进而证明出四边形AEFD是菱形.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∵EF∥AD,∴四边形AEFD是平行四边形,∵DE平分∠ADC,∴∠1=∠2,∵EF∥AD,∴∠1=∠DEF,∴∠2=∠DEF,∴DF=EF,∵四边形AEFD是平行四边形,∴四边形AEFD是菱形.本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.18、(1)x1=,2=;(2).【解析】

(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先去括号整理为一般形式,再利用因式分解法解方程即可得出两个一元一次方程,求出方程的解即可.【详解】(1)2x22x50.∵a=2,b=2x,c=-5,∴,∴x=,∴x1=,2=;(2)4x(2x1)3(2x1),,,(2x-1)(4x-3)=0,.此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.【详解】方程x2-14x+48=0,即(x-6)(x-8)=0,则x-6=0或x-8=0,解得:x1=6,x2=8,则矩形的对角线长是:=1,故答案为:1.本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.20、①②③【解析】分析:根据折叠的相知和正方形的性质可以证明⊿≌⊿;根据勾股定理可以证得;先证得,由平行线的判定可证得;由于⊿和⊿等高的.故由⊿:⊿求得面积比较即解得.详解:∵,,∴⊿≌⊿(),∴,故①正确的.∵,∴,,设,则,,在⊿中,根据勾股定理有:,即,解得即,则,∴,∴,∵且满足,∴,∴故②正确的.∵,且⊿和⊿等高的.∴⊿:⊿=,∵⊿=,∴⊿=⊿=,故③正确的.故答案为:①②③.点睛:本题是一道综合性较强的几何题,其中勾股定理与方程思想的结合起来为破解②③提供了有力的支撑,技巧性比较强,也是本题的难点所在,对于大多数同学来说具有一定的挑战性.21、1【解析】

根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,

∴DM=AB=3,

∵ME=DM,

∴ME=1,

∴DE=DM+ME=4,

∵D是AB的中点,DE∥BC,

∴BC=2DE=1,

故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22、【解析】

解:共3个科目,数学科目是其中之一,故抽到数学科目的概率为23、y=0.5x−0.5【解析】

令x=0,求得点B的坐标,令y=0,求得点A的坐标,由旋转的性质可知:AO′=AO,O′B′=OB,从而可求得点B′的坐标.【详解】令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,由旋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论