2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题【含答案】_第1页
2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题【含答案】_第2页
2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题【含答案】_第3页
2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题【含答案】_第4页
2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年江苏省淮安市岔河九制学校数学九年级第一学期开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列从左到右的变形中,是因式分解的是()A.m2-9=(x-3) B.m2-m+1=m(m-1)+1 C.m2+2m=m(m+2) D.(m+1)2=m2+2m+12、(4分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定3、(4分)平行四边形中,,则的度数是()A. B. C. D.4、(4分)当x<a<0时,与ax的大小关系是().A.>ax B.≥ax C.<ax D.≤ax5、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数6、(4分)若二次根式有意义,则实数x的取值范围是A.x≠3 B.x>3 C.x≥3 D.x<37、(4分)如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长()A. B. C. D.8、(4分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在中,若,则_____________10、(4分)如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;11、(4分)若,则的值是________.12、(4分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.13、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,字形是非常重要的基本图形,可以建立如下的“模块”(如图①):.(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点,点在直线上运动,若,求此时点的坐标;②如图③,过点作轴与轴的平行线,交直线于点,求点关于直线的对称点的坐标.15、(8分)分解因式:.16、(8分)如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点F为AD的中点,连接FE并延长交BC于点G.(1)求证:;(2)若,,,求BG的长.17、(10分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.18、(10分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若在实数范围内有意义,则x的取值范围是_________.20、(4分)若关于的方程有增根,则的值是___________.21、(4分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)22、(4分)如图,四边形是矩形,是延长线上的一点,是上一点,;若,则=________.23、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线分别与轴、轴交于点,;直线分别与轴交于点,与直线交于点,已知关于的不等式的解集是.(1)分别求出,,的值;(2)求.25、(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.26、(12分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:(1)示意图中,线段的长为______尺,线段的长为______尺;(2)求芦苇的长度.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式,根据以上内容逐个判断即可.【详解】把一个多项式化成几个整式的积的形式,叫把这个多项式因式分解,也叫分解因式,A、等号前后的字母不一样,故本选项错误;B、不是因式分解,故本选项错误;C、左右相等,且是因式分解,故本选项正确;D、不是因式分解,故本选项错误;故选C.本题考查了因式分解的定义的应用,能理解因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式.2、A【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.平均成绩一样,小明的方差小,成绩稳定,故选A.本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.

错因分析容易题.失分原因是方差的意义掌握不牢.

3、D【解析】

根据平行四边形的对角相等、相邻内角互补求解.【详解】∵平行四形ABCD∴∠B=∠D=180°−∠A∴∠B=∠D=80°∴∠B+∠D=160°故选:D.本题考查的是利用平行四边形的性质,必须熟练掌握.4、A【解析】根据不等式的基本性质3,不等式的两边同乘以一个负数,不等号的方向改变,可得x2>ax.故选A.5、C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].41码共20件,最多,41码是众数,故选C考点:方差;加权平均数;中位数;众数6、A【解析】

被开方数x-3必须是非负数,即x-3≥0,由此可确定被开方数中x的取值范围.【详解】根据题意,得:x-3≥0,解得,x≥3;故选A.主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7、B【解析】

把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.【详解】解:反比例函数的图象经过OB中点E,E点的横坐标为1,,∴E(1,2),∴B(2,4),∵△OAB为Rt△,∠OAB=90°,∴AB=4,把x=2代入得,∴AD=1,∴BD=AB-AD=4-1=3,故选:B.此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.8、D【解析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、;【解析】

根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.【详解】根据题意中,若所以可得BC=故答案为1本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.10、4【解析】

由正方形的对称性和矩形的性质可得结果.【详解】连接DE交FG于点O,由正方形的对称性及矩形的性质可得:∠ABE=∠ADF=∠OEF=∠OFE=15°,∴∠EOH=30°,∴BE=DE=2OE=4EH,∴=4.故答案为4.本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.11、1【解析】

利用完全平方公式变形,原式=,把代入计算即可.【详解】解:把代入得:原式=.故答案为:1.本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.12、17.1.【解析】

根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.【详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=21°,∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,∵DF=DC,∴∠ECD=,故答案为:17.1.本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.13、﹣1【解析】

已知等式左边利用题中的新定义化简,再利用拆项法变形,整理后即可求出解.【详解】解:已知等式利用题中的新定义化简得:+…+=,整理得:()=,合并得:()=,即=0,去分母得:x+2018+x=0,解得:x=﹣1,经检验x=﹣1是分式方程的解,则x=﹣1.故答案为:﹣1.本题考查了分式的混合运算,属于新定义题型,将所求的式子变形之后利用进行拆项是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)①;②【解析】

(1)根据余角的性质就可以求出∠B=∠DCE,再由∠A=∠D=90°,就可以得出结论;(2)①作AG⊥x轴于点G,BH⊥x轴于点H,可以得出△AGO∽△OHB,可以得出,设点B的坐标为(x,-2x+1),建立方程求出其解就可以得出结论;②过点E作EN⊥AC的延长线于点N,过点D作DM⊥NE的延长线于点M,设E(x,y),先可以求出C、D的坐标,进而可以求出DM=x+2,ME=7-y,CN=x-1,EN=y-1,DE=AD=6,CE=AC=1.再由条件可以求出△DME∽△ENC,利用相似三角形的性质建立方程组求出其解就可以得出结论.【详解】(1)证明:∵∠BCE=90°,∴∠ACB+∠DCE=90°.∵∠A=90°,∴∠ACB+∠B=90°,∴∠DCE=∠B.∵∠A=∠D,∴△ABC∽△DCE;(2)①解:作轴,轴.,∴∴,∵点B在直线y=-2x+1上,∴设点B的坐标为(x,-2x+1),∴OH=x,BH=-2x+1,∴,,,则,∴;②解:过点作轴,作,延长交于.∵A(-2,1),∴C点的纵坐标为1,D点的横坐标为-2,设C(m,1),D(-2,n),∴1=-2m+1,n=-2×(-2)+1,∴m=1,n=7,∴C(1,1),D(-2,7).设.,∴.,,代入得方程组为:,解之得:..本题是一道一次函数的综合试题,考查了相似三角形的判定及性质的运用,轴对称的性质的运用,方程组的运用,解答时灵活运用相似三角形的性质是关键.15、.

【解析】

先提公因式(x-y),再运用平方差公式分解因式.【详解】,,,.本题考核知识点:因式分解.解题关键点:熟练掌握因式分解基本方法.16、(1)见解析;(2).【解析】

(1)由直角三角形斜边中线定理,得到EF=DF,然后得到∠FED=∠FDE,利用平行线的性质和对顶角相等,得到∠EBG=∠BEG,从而得到BG=GE.(2)由平行四边形和平行线的性质,可以得到△ABE为等腰直角三角形,根据计算得AE=BE=3,又AF=EF=3,可得△AEF为等边三角形,则∠EAD=60°,从而得到∠EBG=∠ADE=30°,进而得到BG的长度.【详解】解:(1)证明:∵∴∵点F是AD的中点∴∴∵四边形ABCD是平行四边形∴∴∵∴∴(2)∵四边形ABCD是平行四边形∴,∴∵∴∴∴由(1)可得,∴是等边三角形∴∴∴;本题考查了等腰三角形判定和性质,直角三角形斜边中线定理,以及含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的角度和边长的计算问题.17、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】

(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),

m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图,∵∴这组数据的平均数是1.2.∵在这组数据中,3出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.18、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解析】

(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.【详解】(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四边形ACFD为平行四边形.(2)解:由题易得BC==8(cm),△ABC的面积=24cm2.要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,∴将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)解:将Rt△ABC向左平移4cm,则BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四边形ACFD是平行四边形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥-1【解析】

根据二次根式的性质即可求解.【详解】依题意得x+1≥0,解得x≥-1故填:x≥-1此题主要考查二次根式的性质,解题的关键是熟知根号内被开方数为非负数.20、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21、甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲.故答案为甲.22、【解析】分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.详解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°.故答案为:23°.点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.23、1.【解析】

作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB===10,∵M是直角△ABC斜边AB上的中点,∴CM=AB=3.∵E是BD的中点,M是AB的中点,∴ME=AD=3.∴3﹣3≤CE≤3+3,即3≤CE≤1.∴最大值为1,故答案为:1.本题考查了三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论