2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题含解析_第1页
2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题含解析_第2页
2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题含解析_第3页
2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题含解析_第4页
2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广西桂林市、防城港市联合调研高一上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.2.设函数,若关于方程有个不同实根,则实数的取值范围为()A. B.C. D.3.在中,,.若点满足,则()A. B.C. D.4.在内,不等式解集是()A. B.C. D.5.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.6.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.7.函数f(x)=-|sin2x|在上零点的个数为()A.2 B.4C.5 D.68.设全集U=N*,集合A={1,2,5},B={2,4,6},则图中的阴影部分表示的集合为()A. B.4,C. D.3,9.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知函数,若当时,恒成立,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为角终边上一点,且,则______12.已知角的终边经过点,则的值是______.13.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________14.定义在上的函数满足,且时,,则________15.已知函数的最大值与最小值之差为,则______16.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.18.设全集为,或,.(1)求,;(2)求.19.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.20.已知函数.(1)求函数的定义域;(2)设,若函数在上有且仅有一个零点,求实数的取值范围;(3)设,是否存在正实数,使得函数在内的最大值为4?若存在,求出的值;若不存在,请说明理由.21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.2、B【解析】等价于,即或,转化为与和图象交点的个数为个,作出函数的图象,数形结合即可求解【详解】作出函数的图象如下图所示变形得,由此得或,方程只有两根所以方程有三个不同实根,则,故选:B【点睛】易错点点睛:本题的易错点为函数的图像无限接近直线,即方程只有两根,另外难点在于方程的变形,即因式分解3、A【解析】,故选A4、C【解析】根据正弦函数的图象和性质,即可得到结论【详解】解:在[0,2π]内,若sinx,则x,即不等式的解集为(,),故选:C【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题5、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制6、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用7、C【解析】在同一坐标系内画出两个函数y1=与y2=|sin2x|的图象,根据图象判断两个函数交点的个数,进而得到函数零点的个数【详解】在同一直角坐标系中分别画出函数y1=与y2=|sin2x|的图象,结合图象可知两个函数的图象在上有5个交点,故原函数有5个零点故选C【点睛】判断函数零点的个数时,可转化为判断函数和函数的图象的公共点的个数问题,解题时可画出两个函数的图象,通过观察图象可得结论,体现了数形结合在解题中的应用8、C【解析】由集合,,结合图形即可写出阴影部分表示的集合【详解】解:根据条件及图形,即可得出阴影部分表示的集合为,故选.【点睛】考查列举法的定义,以及图表示集合的方法,属于基础题.9、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C10、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用.本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、##【解析】根据三角函数定义得到,,进而得到答案.【详解】角的终边经过点,,,.故答案为:.13、(2,0,0)(答案不唯一)【解析】利用空间两点间的距离求解.【详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)14、【解析】根据题意可得,再根据对数运算法则结合时的解析式,即可得答案;【详解】由可得函数为奇函数,由可得,故函数的周期为4,所以,因为,所以..故答案为:.【点睛】本题考查函数奇偶性及对数的运算法则,考查逻辑推理能力、运算求解能力.15、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.16、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.18、(1)或,(2)或【解析】(1)根据集合的交集和并集的定义即可求解;(2)先根据补集的定义求出,然后再由交集的定义即可求解.【小问1详解】解:因为或,,所以或,;【小问2详解】解:因为全集为,或,,所以或,所以或.19、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.20、(1);(2);(3)存在,.【解析】(1)根据对数函数的定义域列不等式求解即可.(2)由函数的单调性和零点存在定理,列不等式求解即可.(3)由对勾函数的性质可得函数的单调区间,利用分类讨论的思想讨论定义域与单调区间的关系,再利用函数的最值存在性问题求出实数的值.【详解】(1)由题意,函数有意义,则满足,解得,即函数的定义域为.(2)由,且,可得,且为单调递增连续函数,又函数在上有且仅有一个零点,所以,即,解得,所以实数的取值范围是.(3)由,设,则,易证在为单调减函数,在为单调增函数,当时,函数在上为增函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上为减函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上减函数,在上为增函数,所以最大值为或,解得,符合题意,综上可得,存在使得函数的最大值为4.【点睛】本题考查了对数函数的定义域问题、零点存在定理、对勾函数的应用,考查了理解辨析的能力、数学运算能力、分类讨论思想和转化的数学思想,属于一般题目.21、(1)投资债券,投资股票;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论