版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市吉林实验中学2025届高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间上的最小值是A. B.0C. D.22.设且,若对恒成立,则a的取值范围是()A. B.C. D.3.已知,,,则,,大小关系为()A. B.C. D.4.已知是上的奇函数,且当时,,则当时,()A. B.C. D.5.下列函数,表示相同函数的是()A., B.,C., D.,6.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③7.直线过点,且与轴正半轴围成的三角形的面积等于的直线方程是()A. B.C. D.8.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则9.已知幂函数的图象过(4,2)点,则A. B.C. D.10.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(且)过定点P,且P点在幂函数的图象上,则的值为_________12.已知tanα=3,则sinα(cosα-sinα)=______13.函数的值域为_____________14.定义在上的奇函数满足:对于任意有,若,则的值为__________.15.若点在函数的图象上,则的值为______.16.已知是定义在上的奇函数,当时,,则时,__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式;(2)若任意恒成立,求实数的取值范围.18.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域19.已知求的值;求的值.20.已知的部分图象如图.(1)求函数的解析式;(2)求函数在上的单调增区间.21.已知集合,(1)若,求;(2)在①,②,③,这三个条件中任选一个作为已知条件,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】函数,可得的对称轴为,利用单调性可得结果【详解】函数,其对称轴为,在区间内部,因为抛物线的图象开口向上,所以当时,在区间上取得最小值,其最小值为,故选A【点睛】本题考查二次函数的最值,注意分析的对称轴,属于基础题.若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域.2、C【解析】分,,作与的图象分析可得.【详解】当时,由函数与的图象可知不满足题意;当时,函数单调递减,由图知,要使对恒成立,只需满足,得.故选:C注意事项:
用黑色墨水的钢笔或签字笔将答案写在答题卡上.
本卷共9题,共60分.3、C【解析】由对数的性质,分别确定的大致范围,即可得出结果.【详解】因为,所以,,所以,,,所以.故选:C.4、B【解析】设,则,求出的解析式,根据函数为上的奇函数,即可求得时,函数的解析式,得到答案.【详解】由题意,设,则,则,因为函数为上的奇函数,则,得,即当时,.故选:B.【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,其中解答中熟记函数的奇偶性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】由两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【详解】选项A,一个为指数运算、一个为对数运算,对应法则不同,因此不为相同函数;选项B,,为相同函数;选项C,函数定义域为,函数定义域为,因此不为相同函数;选项D,与函数对应法则不同,因此不为相同函数故选:B6、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C7、A【解析】先设直线方程为:,根据题意求出,即可得出结果.【详解】设所求直线方程为:,由题意得,且解得故,即.故选:A.【点睛】本题主要考查求直线的方程,熟记直线的斜截式方程即可,属于常考题型.8、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D9、D【解析】设函数式为,代入点(4,2)得考点:幂函数10、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】由指数函数的性质易得函数过定点,再由幂函数过该定点求解析式,进而可求.【详解】由知:函数过定点,若,则,即,∴,故.故答案为:9.12、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查13、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题14、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值15、【解析】将点代入函数解析式可得的值,再求三角函数值即可.【详解】因为点在函数的图象上,所以,解得,所以,故答案为:.16、【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由奇函数的性质可得出,设,由奇函数的性质可得出可得出的表达式,综合可得出结果;(2)分析可知函数为上的增函数,由原不等式变形可得出,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】(1)因为函数是定义在上的奇函数,所以,且.设,则,所以,所以;(2)因为对任意恒成立,所以,又是定义在上的奇函数,所以,作出函数的图象如下图所示:由图可知,在上单调递增,所以,即恒成立,令,,,则函数在上单调递增,所以,所以,即实数的取值范围.18、(1);(2).【解析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【点睛】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.19、(1);(2)【解析】(1)作的平方可得,则,由的范围求解即可;(2)先利用降幂公式和切弦互化进行化简,得原式,将与代入求解即可【详解】(1)由题,,则,因为又,则,所以因此,(2)由题,由(1)可,代入可得原式【点睛】本题考查同角的平方关系式及完全平方公式的应用,考查降幂公式,考查切弦互化,考查运算能力20、(1);(2)和.【解析】(1)由图知:且可求,再由,结合已知求,写出解析式即可.(2)由正弦函数的单调性,知上递增,再结合给定区间,讨论值确定其增区间.【详解】(1)由图知:且,∴.又,即,而,∴.综上,.(2)∵,∴.当时,;当时,,又,∴函数在上的单调增区间为和.21、(1)(2)答案见解析【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合同解除房顶施工合同
- 2024年反担保固定抵押权合同范本版
- 2024年学校食堂炊事员聘用合同书版B版
- 2024年专用产品供应保密合作合同版B版
- 2024专项海报设计服务合同一
- 2024年国家教育考试中心智能安检门维护服务合同
- 2024年卫星通信服务租赁合同
- 2024年度供应商原材料采购合作框架合同版
- 2024年专业劳务分包公司合作合同模板版
- 2024办公室文员聘用正式劳动合同
- 2024年10月自考03941工程招投标与合同管理试题及答案含评分参考
- 四川省宜宾市2023-2024学年六年级上学期语文期末试卷(含答案)
- 烟草店店员合同
- 《我国有限责任公司股权回购制度的研究》
- 《高校突发事件的》课件
- 辽宁省2024年中考数学试卷
- 运输组织学智慧树知到答案2024年北京交通大学
- 工厂品质考试试题及答案
- 人教版八年级物理《透镜及其应用》经典习题(附答案)
- 国家开放大学《中文学科论文写作》形考任务1-4参考答案
- (高清版)TDT 1071-2022 园地分等定级规程
评论
0/150
提交评论