甘肃省甘南2025届高二数学第一学期期末经典试题含解析_第1页
甘肃省甘南2025届高二数学第一学期期末经典试题含解析_第2页
甘肃省甘南2025届高二数学第一学期期末经典试题含解析_第3页
甘肃省甘南2025届高二数学第一学期期末经典试题含解析_第4页
甘肃省甘南2025届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省甘南2025届高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A.13时~14时 B.16时~17时C.18时~19时 D.19时~20时2.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.3.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.24.已知实数,,则下列不等式恒成立的是()A. B.C. D.5.设函数,则曲线在点处的切线方程为()A. B.C. D.6.若函数在上为单调增函数,则m的取值范围()A. B.C. D.7.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确9.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.10.已知函数,则()A.3 B.C. D.11.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.1012.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.14.一个质地均匀的正四面体,其四个面涂有不同的颜色,抛掷这个正四面体一次,观察它与地面接触的颜色得到样本空间{红,黄,蓝,绿},设事件{红,黄},事件{红,蓝},事件{黄,绿},则下列判断:①E与F是互斥事件;②E与F是独立事件;③F与G是对立事件;④F与G是独立事件.其中正确判断的序号是______(请写出所有正确判断的序号)15.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.16.已知双曲线的左、右焦点分别为,,点是圆上一个动点,且线段的中点在的一条渐近线上,若,则的离心率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设{an}是公比为正数的等比数列a1=2,a3=a2+4(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn18.(12分)已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围19.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积20.(12分)在如图三角形数阵中第n行有n个数,表示第i行第j个数,例如,表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m为公差的等差数列,从第三行起每一行的数从左到右构成以m为公比的等比数列(其中).已知.(1)求m及;(2)记,求.21.(12分)已知二次函数,.(1)若,求函数的最小值;(2)若,解关于x的不等式.22.(10分)已知椭圆的焦距为,离心率为(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】要找入园人数最多的,只要根据函数图象找出图象中变化最大的即可【详解】结合函数的图象可知,在13时~14时,14时~15时,…,20时~21时八个时段中,图象变化最快的为16到17点之间故选:B.【点睛】本题考查折线统计图的实际应用,属于基础题.2、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.3、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A4、C【解析】根据不等式性质和作差法判断大小依次判断每个选项得到答案.【详解】当时,不等式不成立,错误;,故错误正确;当时,不等式不成立,错误;故选:.【点睛】本题考查了不等式的性质,作差法判断大小,意在考查学生对于不等式知识的综合应用.5、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A6、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.7、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A8、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C9、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D10、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B11、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题12、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过点作于,过点作于,利用双曲线的定义以及勾股定理可求得,由已知可得,可得出关于、的齐次不等式,结合可求得的取值范围.【详解】过点作于,过点作于,因为,所以,又因为,所以,故,又因为,且,所以,因此,所以,又因为直线与圆有公共点,所以,故,即,则,所以,又因为双曲线的离心率,所以.故答案为:.14、②③【解析】由对立和互斥事件的定义判断①③;由独立事件的性质判断②④.【详解】{红},则E与F不是互斥事件;且,则F与G是对立事件;,则E与F是独立事件;,,则F与G不是独立事件故答案为:②③15、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.16、【解析】设,,因为点是线段中点,所以有,代入坐标求出点的轨迹为圆,因为点在渐近线上,所以圆与渐近线有公共点,利用点到直线的距离求出临界状态下渐近线的斜率,数形结合求出有公共点时渐近线斜率的范围,从而求出离心率的范围.【详解】解:设,,因为点是线段的中点,所以有,即有,因为点在圆上,所以满足:,代入可得:,即,所以点的轨迹是以为圆心,以1为半径的圆,如图所示:因为点在渐近线上,所以圆与渐近线有公共点,当两条渐近线与圆恰好相切时为临界点,则:圆心到渐近线的距离为,因为,所以,即,且,所以,此时,,当时,渐近线与圆有公共点,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题18、【解析】由题设得是为真时的子集,即,法一:讨论、,根据集合的包含关系求参数范围;法二:利用在恒成立,结合参变分离及指数函数的单调性求参数范围.【详解】由,得,则命题对应的集合为,设命题对应的集合为,是的必要条件,则,由,得,又,法一:若时,,则,显然成立;若时,,则,可得,综上:法二:在恒成立,即,∵在单调递减,∴.19、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.20、(1),;(2)【解析】(1)根据题意以m表示出,由即可求出,进而求出;(2)根据等差数列和等比数列的通项公式求出,再利用错位相减法即可求出.【详解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,当时,,又,,满足,,,两式相减得,.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.21、(1)(2)当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为【解析】(1)带入,将化解为,再利用基本不等式求最值即可;(2)将不等式移项整理为,再对a分类讨论,比较两根的大小,即可求得解集.【小问1详解】当a=3时,函数可整理为,因为,所以利用基本不等式,当且仅当,即时,y取到最小值.所以,当时,函数的最小值为.【小问2详解】将不等式整理为,令,即,解得两根为与1,因为,当时,即时,此时的解集为;当时,即时,此时的解集为;当时,即时,此时的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.22、(1);(2).【解析】(1)由焦距为,离心率为结合性质,列出关于的方程组,求出从而求出椭圆方程;(2)设出直线方程,代入椭圆方程,求出点D、E的坐标,然后利用|BD|,|BE|,|DE|成等比数列,即可求解【详解】(1)由已知,,解得,所以椭圆的方程为(2)由(1)得过点的直线为,由,得,所以,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论