




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市定远育才学校2025届高二数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数f(x)的导函数,若,对,且.总有,则下列选项正确的是()A. B.C. D.2.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.123.已知动点满足,则动点的轨迹是()A.椭圆 B.直线C.线段 D.圆4.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.5.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.166.与直线平行,且经过点(2,3)的直线的方程为()A. B.C. D.7.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.9.曲线在点处的切线方程是A. B.C. D.10.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.11.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.12.抛物线的焦点到准线的距离是A.2 B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______14.已知函数,则的值为______15.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16.过点作圆的切线l,直线与l平行,则直线l过定点_________,与l间的距离为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆左右焦点分别为,,离心率为,P是椭圆上一点,且面积的最大值为1.(1)求椭圆的方程;(2)过的直线交椭圆于M,N两点,求的取值范围.18.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由19.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.20.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.21.(12分)已知数列是等差数列,为其前n项和,,(1)求的通项公式;(2)若,求证:为等比数列22.(10分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以C正确,同理,由图可知,故D不正确.故选:C2、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B3、C【解析】根据两点之间的距离公式的几何意义即可判定出动点轨迹.【详解】由题意可知表示动点到点和点的距离之和等于,又因为点和点的距离等于,所以动点的轨迹为线段.故选:4、C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C5、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A6、C【解析】由直线平行及直线所过的点,应用点斜式写出直线方程即可.【详解】与直线平行,且经过点(2,3)的直线的方程为,整理得故选:C7、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.8、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力9、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.10、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D11、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.12、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题14、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:15、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.16、①.②.##2.4【解析】利用直线与平行,结合切线的性质求出切线的方程,即可确定定点坐标,再利用两条平行线间的距离公式求两线距离.【详解】由题意,直线斜率,设直线的方程为,即∴直线l过定点,由与圆相切,得,解得,∴的方程为,的方程为,则两直线间的距离为故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)依题意得到方程组,求出、、,即可求出椭圆方程;(2)首先求出过且与轴垂直时、的坐标,即可得到,当过的直线不与轴垂直时,可设,,直线方程为,联立直线与椭圆方程,消元、列出韦达定理,根据平面向量数量积的坐标表示得到,将韦达定理代入得到,再根据函数的性质求出取值范围;【小问1详解】解:由题意可列方程组,解得,所以椭圆方程为:.【小问2详解】解:①当过的直线与轴垂直时,此时,,,则,.②当过的直线不与轴垂直时,可设,,直线方程为联立得:.所以,=将韦达定理代入上式得:.,,,由①②可知.18、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【点睛】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式或者配方,导函数等求出最值,求出取值范围,特别注意直线斜率存在和不存在的情况,需要分类讨论.19、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或20、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)(2)证明见解析【解析】(1)由已知条件列出关于的方程组,解方程组求出,从而可求出的通项公式,(2)由(1)可得,然后利用等比数列的定义证明即可【小问1详解】设数列的公差为,则由,,得,解得,所以【小问2详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论