




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市秦淮区2025届数学高二上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.2.曲线上的点到直线的最短距离是()A. B.C. D.13.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.4.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.5.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.6.已知曲线,则“”是“C为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.8.已知数列满足,且,则()A.2 B.3C.5 D.89.已知,,则下列结论一定成立的是()A. B.C. D.10.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.1211.已知两圆相交于两点,,两圆圆心都在直线上,则值为()A. B.C. D.12.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若分别是平面的法向量,且,,,则的值为________.14.下列说法中,正确的有_________(填序号).①“”是“方程表示椭圆”的必要而不充分条件;②若:,则:;③“,”的否定是“,”;④若命题“”为假命题,则命题一定是假命题;⑤是直线:和直线:垂直的充要条件.15.数列满足,,则___________.16.抛物线焦点坐标是,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公比不为1的等比数列,,且为的等差中项.(1)求的公比;(2)求的通项公式及前n项和.18.(12分)已知函数(1)当在处取得极值时,求函数的解析式;(2)当的极大值不小于时,求的取值范围19.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.20.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求.21.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和22.(10分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.2、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B3、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.4、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.5、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B6、A【解析】根据充分必要条件的定义,以及双曲线的标准方程进行判断可得选项【详解】解:当时,表示双曲线,当表示双曲线时,则,所以“”是“C为双曲线”的充分不必要条件.故选A7、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B8、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D9、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.10、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C11、A【解析】由相交弦的性质,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得的值,即可得的坐标,进而可得中点的坐标,代入直线方程可得;进而将、相加可得答案【详解】根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得,则,故中点为,且其在直线上,代入直线方程可得,1,可得;故;故选:A【点睛】方法点睛:解答圆和圆的位置关系时,要注意利用平面几何圆的知识来分析解答.12、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.14、①【解析】根据椭圆方程的结构特征可判断①;注意到分式不等式分母不等于0可判断②;由全称命题的否定可判断③;根据复合命题的真假可判断④;由直线垂直的充要条件可判断⑤.【详解】①中,当时,方程为,表示圆,若方程表示椭圆,则,解得或,故①正确;②中,,故为:,而,故②不正确;③中,“,”的否定应为“,”,故③不正确;④中,若命题“”为假命题,有可能为真或为假,故④不正确;⑤中,,解得或,故是直线:和直线:垂直的充分不必要条件,故⑤不正确.故答案为:①15、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:16、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)设数列公比为,根据列出方程,即可求解;(2):由(1)得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设数列公比为,因为为的等差中项,可得,即,即,解得或(舍去),所以等比数列的公比为.【小问2详解】解:由(1)知且,可得,所以.18、(1);(2).【解析】(1)对函数求导,根据求出m,并验证此时函数在x=1处取得极值,进而求得答案;(2)对函数求导,进而求出函数的单调区间和极大值,然后求出m的范围.【小问1详解】因为,所以.因为在处取得极值,所以,所以,此时,时,,单调递减,时,,单调递增,即在处取得极小值,故.【小问2详解】,令,解得.时,,单调递增,时,,单调递减,时,,单调递增.,即的取值范围是.19、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为20、(1)(2)1280【解析】(1)直接利用等差数列通项公式即可求解;(2)先判断出数列单调性,由,则时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】设数列的公差为,由,可知,∴;【小问2详解】由(1)知,数列为单调递减数列,由,则时,,时,;.21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现场会布置合同协议
- 理发店合伙合同协议
- 2025至2030年中国砻碾组合米机数据监测研究报告
- 2025至2030年中国盐酸洛美沙星滴耳液数据监测研究报告
- 2025至2030年中国男式毛衫数据监测研究报告
- 2025至2030年中国电动烟道闸门数据监测研究报告
- 2025至2030年中国猫眼石戒指数据监测研究报告
- 2025至2030年中国洗手液自动挤出器数据监测研究报告
- 2025至2030年中国模具打磨抛光机数据监测研究报告
- 2025至2030年中国手工钨极直流氩弧焊机数据监测研究报告
- 人教版(2024)七年级下册英语期中质量检测试卷(含答案)
- 《骑鹅旅行记》阅读题(有答案,内容全)
- 【越南】环境保护法
- 《C语言程序设计》教案(清华谭浩强)
- ●粘度对离心泵性能影响最新标准初析及粘液泵选型经验
- 环己烷安全周知卡-原料
- 三宝证盟荐亡往生功德文疏
- YY∕T 1849-2022 重组胶原蛋白
- 行政管理工作流程优化方案
- 鼓式制动器毕业设计
- 医院内部医疗废物收集运送流程图
评论
0/150
提交评论