版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安、宿迁等2025届高一上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.2.向量,若,则k的值是()A.1 B.C.4 D.3.函数fx=lgA.0 B.1C.2 D.34.关于x的一元二次不等式对于一切实数x都成立,则实数k满足()A. B.C. D.5.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.366.下列函数中,是偶函数且值域为的是()A. B.C. D.7.已知集合,,则中元素的个数是()A. B.C. D.8.下列几何体中是棱柱的有()A.1个 B.2个C.3个 D.4个9.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A. B.6C. D.710.“是”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数是幂函数,且在上是减函数,则实数__________.12.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)13.已知是内一点,,记的面积为,的面积为,则__________14.设向量不平行,向量与平行,则实数_________.15.不论为何实数,直线恒过定点__________.16.已知函数,x0R,使得,则a=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、18.已知函数(1)求方程在上的解;(2)求证:对任意的,方程都有解19.已知函数是偶函数.(1)求实数的值;(2)当时,函数存在零点,求实数的取值范围;(3)设函数,若函数与的图像只有一个公共点,求实数的取值范围.20.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本21.(1)已知,求的值;(2)计算:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.2、B【解析】首先算出的坐标,然后根据建立方程求解即可.【详解】因为所以,因为,所以,所以故选:B3、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C4、C【解析】只需要满足条件即可.【详解】由题意,解得.故选:C.5、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.6、D【解析】分别判断每个选项函数的奇偶性和值域即可.【详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.7、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B8、C【解析】根据棱柱的定义进行判断即可【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个故选:C【点睛】本题主要考查棱柱的概念,属于简单题.9、D【解析】先求出,再求出即得解.【详解】由已知,函数与函数互为反函数,则由题设,当时,,则因为为奇函数,所以.故选:D10、B【解析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由可得;由可得则由不能得到,但由可得故“是”的必要不充分条件.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:212、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.13、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故14、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:15、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.16、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)18、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解综上,对任意的,方程都有解19、(1)(2)(3)【解析】(1)函数是偶函数,所以得出值检验即可;(2),因为时,存在零点,即关于的方程有解,求出的值域即可;(3)因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以,换元,研究二次函数图象及性质即可得出实数的取值范围.【小问1详解】解:因为是上偶函数,所以,即解得,此时,则是偶函数,满足题意,所以.【小问2详解】解:因为,所以因为时,存在零点,即关于的方程有解,令,则因为,所以,所以,所以,实数的取值范围是.【小问3详解】因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以令,得…(*),记,①当时,函数图像开口向上,又因为图像恒过点,方程(*)有一正一负两实根,所以符合题意;②当时,因为,所以只需,解得,方程(*)有两个相等的正实根,所以满足题意,综上,的取值范围是.20、(1)(2)14元【解析】(1)根据题中所给的解析式,分情况列出其满足的不等式组,求得结果;(2)根据题意,列出利润对应的解析式,分段求最值,最后比较求得结果.【详解】(1)由得,或解得,或.即.答:当产品A的售价时,其销量y不低于5万件(2)由题意,总利润①当时,,当且仅当时等号成立.②当时,单调递减,所以,时,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暖场活动2024年度摄影摄像服务合同
- 二零二四年度金融咨询服务合同2篇
- 工程设计咨询合同范本2篇
- 门窗合作简单版合同范本
- 2024版工程项目合作开发合同2篇
- 人教版九年级化学第四单元复习课件
- 人教版九年级化学第十一单元酸、碱、盐专题复习(一)酸、碱、盐化学性质归纳分层作业课件
- 建筑工程文明施工协议书
- 2024年度化工厂车间改造与安全设备采购合同2篇
- 收费站新员工培训
- 《西汉海昏侯大墓》课件
- 生产计划试题B及答案
- 儿科对桡动脉采血失败原因分析品管圈鱼骨图柏拉图
- 初中校长培训总结
- 管理能力评估表(10项能力,等级区分)
- 吊装施工记录
- 事故车辆查勘与定损习题答案-交通事故责任认定
- 科学的转折四部曲:薛定谔的猫巴甫洛夫的狗斐波那契的兔子宇航
- DTⅡ型固定式带式输送机(托辊)
- 圆形抗滑桩在滑坡治理中的应用研究
- 唐诗中国文化应用文专题高考英语作文复习专项
评论
0/150
提交评论