![2025届湖南省常德市石门一中数学高二上期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view14/M0A/3F/31/wKhkGWcGy82AD8kFAAH_-zWpx_Q946.jpg)
![2025届湖南省常德市石门一中数学高二上期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view14/M0A/3F/31/wKhkGWcGy82AD8kFAAH_-zWpx_Q9462.jpg)
![2025届湖南省常德市石门一中数学高二上期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view14/M0A/3F/31/wKhkGWcGy82AD8kFAAH_-zWpx_Q9463.jpg)
![2025届湖南省常德市石门一中数学高二上期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view14/M0A/3F/31/wKhkGWcGy82AD8kFAAH_-zWpx_Q9464.jpg)
![2025届湖南省常德市石门一中数学高二上期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view14/M0A/3F/31/wKhkGWcGy82AD8kFAAH_-zWpx_Q9465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省常德市石门一中数学高二上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.根据如下样本数据,得到回归直线方程,则x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.2.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则3.若复数z满足(其中为虚数单位),则()A. B.C. D.4.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.5.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或6.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)7.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差8.已知命题“若,则”,命题“若,则”,则下列命题中为真命题的是()A. B.C. D.9.函数的大致图象是()A. B.C. D.10.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.11.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等12.若不等式组表示的区域为,不等式表示的区域为,向区域均匀随机撒颗芝麻,则落在区域中的芝麻数约为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,当时,不等式恒成立,则实数a的取值范围为_______14.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.15.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三条直线:,:,:(是常数),.(1)若,,相交于一点,求的值;(2)若,,不能围成一个三角形,求的值:(3)若,,能围成一个直角三角形,求的值.18.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程19.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.20.(12分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.21.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程22.(10分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出散点图,由散点图得出回归直线中的的符号【详解】作出散点图如图所示.由图可知,回归直线=x+的斜率<0,当x=0时,=>0.故选B【点睛】本题考查了散点图的概念,拟合线性回归直线第一步画散点图,再由数据计算的值2、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.3、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B4、A【解析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D6、B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.7、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.8、D【解析】利用指数函数的单调性可判断命题的真假,利用特殊值法可判断命题的真假,结合复合命题的真假可判断出各选项中命题的真假.【详解】对于命题,由于函数为上的增函数,当时,,命题为真命题;对于命题,若,取,,则,命题为假命题.所以,、、均为假命题,为真命题.故选:D.【点睛】本题考查简单命题和复合命题真假的判断,考查推理能力,属于基础题.9、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C11、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【点睛】本题考查椭圆的方程和性质,考查运算能力,属于基础题12、A【解析】作出两平面区域,计算两区域的公共面积,利用几何概型得出芝麻落在区域Γ内的概率,进而可得答案.【详解】作出不等式组所表示的平面区域如下图中三角形ABC及其内部,不等式表示的区域如下图中的圆及其内部:由图可得,A点坐标为点坐标为坐标为点坐标为.区域即的面积为,区域的面积为圆的面积,即,其中区域和区域不相交的部分面积即空白面积,所以区域和区域相交的部分面积,所以落入区域的概率为.所以均匀随机撒颗芝麻,则落在区域中芝麻数约为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造新函数,求导根据导数大于等于零得到,构造,求导得到单调区间,计算函数最小值得到答案.【详解】当时,不等式恒成立,所以,所以在上是增函数,,则上恒成立,即在上恒成立,令,则,当时,,当时,,所以,所以故答案为:14、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.15、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.16、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或或(3)或【解析】(1)由二条已知直线求交点,代入第三条直线即可;(2)不能围成一个三角形,过二条已知直线的交点,或者与它们平行;(3)由直线互相垂直得,斜率之积为-1.【小问1详解】显然,相交,由得交点,由点代入得所以当,,相交时,.【小问2详解】过定点,因为,,不能围成三角形,所以,或与平行,或与平行,所以,或,或.【小问3详解】显然与不垂直,所以,且或所以的值为或18、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.19、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.20、(1)(2)证明见解析【解析】(1)根据已知得点M的轨迹C为椭圆,根据椭圆定义可得方程;(2)直线的方程设为,与椭圆方程联立,利用韦达定理及线段长公式进行计算即可.【小问1详解】由椭圆定义得,点M的轨迹C为以点为焦点,长轴长为4的椭圆,设此椭圆的标准方程为,则由题意得,所以C方程为;【小问2详解】设点的坐标分别为,由题意知直线的斜率一定存在,设为,则直线的方程可设为,与椭圆方程联立可得,由韦达定理知,所以,,又因为,所以又由题知,所以,所以,所以,得证.21、(1);(2)或.【解析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又∵点在C上,∴,∴,∴椭圆C的标准方程为;【小问2详解】由(1)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年一年级下学期数学第八单元《厘米的认识》(教案)
- 2018-2024年中国三轮摇摇行业市场竞争格局分析及投资方向研究报告
- 2022-2027年中国医用制气设备行业市场运行现状及投资战略研究报告
- 电商企业的国际化运营策略研究
- 2025年慢回弹含炭海绵床垫项目投资可行性研究分析报告
- 2025年中国管制药品行业市场调查研究及发展战略规划报告
- 村监委申请书
- 设备购买申请书
- 新员工转正申请书范文
- 眼科医疗服务项目的市场营销策略
- 2025年上半年北京市事业单位招聘易考易错模拟试题(共500题)试卷后附参考答案
- 山东省滨州市2024-2025学年高一上学期期末考试语文试题(含答案)
- 2025年广西投资集团有限公司招聘笔试参考题库含答案解析
- 北京市北师大附中2024-2025学年高一上学期期末考试数学试卷(含答案)
- 驼鸟养殖生态旅游项目策划书方案模版(4篇)
- 煤矿重大灾害治理中长期规划(防治煤尘爆炸、火灾事故)
- 安全风险隐患举报奖励制度
- 教学成果奖培育工作方案
- 厦门三固科技有限公司货币资金管理优化设计
- 北京卷2025届高考语文倒计时模拟卷含解析
- 2023学年广东省深圳实验学校初中部九年级(下)开学语文试卷
评论
0/150
提交评论