欧洲电力部门需求灵活性的价值-53正式版-WN8_第1页
欧洲电力部门需求灵活性的价值-53正式版-WN8_第2页
欧洲电力部门需求灵活性的价值-53正式版-WN8_第3页
欧洲电力部门需求灵活性的价值-53正式版-WN8_第4页
欧洲电力部门需求灵活性的价值-53正式版-WN8_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ValueofDemandFlexibilityintheEuropeanPowerSectorFinalReport03-10-2023Keyfindings••ThisreportexploresdifferentscenariosfortheEuropeanpoweranddistrictheatingsystemeachrepresentingvaryingdegreesofdemandflexibility.ThescenarioscomplywiththeEU'sobjectiveofbecomingclimateneutralby2050.Whenwecomparethe"Reference"scenario,whichassumesfrozenpolicywithregardstoflexibilityandminimaladvancementindemandresponse(DR)technologies,withthe"Flex"scenario,whereregulatorychanges,technologicaladvancements,andheightenedconsumerawarenessenabledemandresponse,weobservethefollowingadvantages:——————Asocio-economicbenefitof€15.5billionannuallybytheyear2050.Asubstantialreductioninconsumercosts,amountingtoapproximately€26billionannuallyby2050.Adecreaseinaverageconsumerpowerprices(wholesale)from€61/MWhto€55/MWh.Theabatementof40milliontonsofCO2in2030.Areducedneedforapproximately300GWofbatterycapacityand90GWlessgaspeakcapacity.Additionally,anintegrationof100GWmoresolarcapacityintotheenergymix.Investmentsininterconnectorsbetweenbiddingzonesdecreasedby21%(61GW)•Themodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.••Thesefindingsunderscorethepotentialbenefitsassociatedwithembracingdemandresponseandfosteringaflexibleenergylandscape.Pleasenotethatthecostsrelatedtorealizingthepotentialforload-shiftamongcertainconsumers,includinghouseholds,services,industries,andelectricvehicle(EV)owners,havenotbeenfactoredintotheanalysis.Introduction4ProjectcontextDanfossisactivelyengagedinassessingtheroleofdemand-sideflexibilitywithintheforthcomingEuropeanpowersystemlandscape.Againstthisbackdrop,wehavepreparedalong-termanalysisspanningthemilestoneyearsof2025,2030,and2050.Theprimaryobjectiveofthisanalysisistoquantifytheholisticvaluethatvariousformsofdemandflexibilitycancontribute.Ourevaluationhingesonasetofkeymetricsthatencompasssocioeconomicimpact,monetaryadvantagesforconsumers,reductionsinCO2emissionsandfuelconsumption,andpowerprices.Togainathoroughunderstanding,thesecriticalaspectswillbeinvestigatedthroughthelensofthreedistinctscenarios,eachrepresentingvaryingdegreesofdemandflexibility.TheanalysiswillbeconductedbyutilizingtheBalmorelpowersystemmodeltoexamineEuropeanday-aheadmarkets.Thisapproachwillfocusonoptimizingtheintricateinterplaybetweensupplyanddemanddynamics,withtheprimaryaimofminimizingcostsfortheoverallsystemsolution.Note,thatthemodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.5Balmorelisafundamentalpartial-equilibriummodelofthepoweranddistrictheatingsystem.Themodelfindsleast-costsolutionsbasedonassumptionssuchasthedevelopmentoffuelprices,demanddevelopment,technologycostsandcharacteristics,renewableresourcesandotheressentialparameters.BalmorelenergysystemmodellingtoolThemodeliscapableofsimultaneousinvestmentanddispatchoptimisation,showingoptimalsolutionsforpowergenerationandinterconnectorcapacity,dispatch,transmissionflowandelectricityprices.Modeldevelopedtosupporttechnicalandpolicyanalysesofpowersystems.Optimizationofeconomicaldispatchandcapacityexpansionsolutionfortherepresentedenergysystem.Characteristics:open-source,customizable,scalable,transparentMainevaluationmeasures•

Powerpricesandmarketvalues•

Generation&capacitybalancesModeldimensions•

CO2andpollutantemissions•

Socio-economicsystemcostsTemporalscope•

Selectedoptimizationyears•

Timeaggregatedinvestmentoptimization•

HourlydispatchoptimizationGeographicalscope•

Nordics(biddingzones)•

Germany(4regions)•

Baltics•

CentralEurope,UKandItaly•

IberianpeninsulaNote:OvalshapesintheNorthandBalticseasrepresentexisting&futureoffshorewindlocationsinanaggregatedmatter.Illustratedlinesrepresenttheoptionsoftransmissioncapacities.NomenclatureAcronymCAPEXCHPTermAcronymInd.HTermCapitalcostsIndividualHeatingLoadDurationCurveOperationexpendituresPriceDurationCurvePowertoXCombinedHeatandPowerDistrictHeatingDemandSideResponseEuropeanUnionElectricVehiclesFullLoadHoursHydrogenLDCDHOPEXPDCPtXDSREUEVsPVPhotovoltaicsFLHTYNDPV2GTenYearDevelopmentPlantH2VehicletoGridVariableRenewableEnergySourcesHSDCHyperScaleDataCentersVRES82PowerSystemExpectationsElectricitydemandinEuropeTheenvisionedelectrificationofheating,industryandtransportsectorsisexpectedtoincreaseelectricitytwofoldtowards2030.TotalElectricityDemand7.0006.0005.0004.0003.0002.0001.0000Thefollowingsourcesareusedfordemandprojections:•

REPowerEUforhydrogenproductiontargetstowards2030.—

REPowerEUhasbeendevelopedinthewakeofRussia’s

invasionofUkraineandassumes10mill.tondomestichydrogenproduction(330TWh)intheEUalreadyby2030.—

TheEUCommissionMIX-scenariohavebeenusedforthelong-termhydrogendemand.•

TYNDP’s

GlobalAmbitionscenarioforthedevelopmentoftotaldemandforclassicdemand,electricvehiclesandindividualheating.202520302050Electricityconsumption:ClassicdemandElectricityconsumption-HSDCsElectricitytoindustrialelectrificationElectricitytoP2XElectricitytodistrictheatingElectricitytoindividualheatingElectricityconsumption:ElectricVehicles•

Electricityusefordistrictheatingissubjecttomodeloptimisation.10DemandbucketsinthemodelDemandbucketClassicDescriptionAssociatedcostofflexibilityClassicelectricitydemandmainlyforhouseholds,theindustryandservicesector.Nodirectcosts.ThemodelincludesaninertiawhichensuresthatdemandContainsdemandtypesnotexplicitlycoveredundertheothercategories.EU2021mix(approx.):flexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.••••43%industry28%service26%households3%agricultureElectricvehiclesDemandincludesallelectricityforroadtransport.Initialprofileisbasedonchargingpatternsmatchingtransportdemand(Estimatedforindividualcountriesflexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.basedonempiricaldatafromNorway)Nodirectcosts.ThemodelincludesaninertiawhichensuresthatdemandV2Gactivitiesfacetheoccurringmarketcosts(marketclearingspotprices),essentiallyobtainingrevenuesfrompowerarbitrage.Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemandflexibilityisonlyactivatedwhenthereisapricedifferenceofabout55€/MWhIndividualheatingIncludeselectricityconsumptionforspaceheatinginbuildings.Thedemandissuppliedbyheatpumpsandelectricboilers.Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemandflexibilityisonlyactivatedwhenthereisapricedifferenceof10€/MWh.DistrictheatingHeatdemandfordistrictheatingisincluded.Heatpumpsandelectricboilersareamongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-capacity.Usingalternativeoptionsforheatgenerationyieldsadditionalcost.baseddistrictheatinggenerationfromheatonlyboilersorCHP.InvestmentandoperationalcostforadditionalelectricboilersorheatpumpInvestmentcostandoperationalcostsofsteeltanksandpitstorages.DependingonthescenariothemodelmayinvestinsteeltanksandpitstoragesPower-to-XDemandforproductionofe-gasses,e-liquidsandhydrogenbasedonEUcommissionscenarios.Modelledaselectricityconsuminggenerationfacilities(electrolysers).Investmentandoperationalcostforelectrolysersandcavernstoragesincluded.Dependingonscenariomodeloptimisedhydrogenstoragescanbeinstalledtoenableflexibleuseofelectrolysers,whiledemandismodelledconstant.GenerationcapacityinEuropeBuildoutrequirementsandlevelsinthemodelarea••Thedevelopmentinnewcapacityisdrivenbydemanddevelopment,technologycostsandresourceassumptions.Moreover,importantpoliticaltargetsaretakenintoaccount,includingminimumbuildoutforrenewableenergy,coalphaseoutplansandnuclearplans.2.5002.0001.5001.000500Windandsolar:Asaminimumlevelforrenewableenergy,countriesareexpectedtofulfilthelevelsofwindandsolarpowersetoutinENTSO-ETYNDP-scenarioNationaltrendstowards2030.Keynationalareincludedaswell,Germanyforexample,isexpectedtopursuehighertargetsforwindandsolarpowerassetoutintheGovernment’s

EasterPackagefromApril2022,aimingfor215GWsolarpowerandaround120GWofonshorewindin2030.Additionally,80%oftheambitious30GWoffshorewindtargetby2030isassumedrealised.Beyond2030,investmentsarebasedonmodeloptimisation.ForonshorewindandsolarPV,countryspecificcapsareemployedtoreflectarealisticdeploymentthatconsidersplanningandgridconstraintsatthelocallevel.Theseconstraintsaregraduallyrelaxedovertime.••Nuclearcapacityisdeterminedexogenously.ThecapacitybasedonplansfromWorldNuclearAssociationfordecommissioningbutwithnewplantsbeingbuiltintheUK,FinlandandPoland.Thetotalcapacitydeclinesfromaround100GWin2021to~90GWin2050.020252030Minonshore203520402050OnshorecapOffshorecapSolarcapMaxonshoreMaxoffshoreMaxsolarMinoffshoreMinsolarThermalcapacity:Currentplansfordecommissioningofcoal-firedcapacityareconsidered.Otherthanthat,decommissioningofandinvestmentsinthermalpowercapacityisdeterminedbythemodel.Investmentinbiomasscapacity(woodchips,woodpellets,straw)isconstrainedat30GWby2030(correspondingtoafuelinputofapprox.1.900PJ)toreflectthatthecurrentpipelineofnewbiomasscapacityislimited.Towards2050,thebiomassconstraintisliftedto40GW.Note:oMinandmaxshowassumptionsonminimumandmaximumpossiblebuildoutpathways.Nodifferencebetweenthetwomeans,meansthataexactcapacityisinstalled.ooo“Cap”

showscapacityasaresultofmodeloptimisation.SpainandPortugalarenotincludedinthepresentgraph.12FuelpricesFuelandCO2prices6050403020100Fuelprices••Futures(April2023).Untilandincluding2026Longterm.Pricesexpectedtoconvergetolongtermequilibriumpricesin2030•••IEAWorldEnergyOutlook2022AnnouncedPledgesscenarioNaturalgas:LNGimportprice(Japan).CoalLightoilNaturalgasWoodchipsWoodpellets•Currenthighgaspricesexpectedtonormaliseovertime,butoutlooksaredifficultincurrentsituation.Towards2030,reduceddependenceonnaturalgasandhighglobalbuildoutofrenewableslowersdemandforfossilfuelsandthuspricesETSprice250CO2-prices20015010050••Forwardprices(April2023).Untilandincluding2026Longterm.PricesexpectedtoconvergetoAnnouncedPledgesscenariofromWEO2022in2030andonwards.•HighCO-prices–

alsogoingforwardto2030.However,current2pricesarealsotosomeextentaffectedbyhighgasprices.013Studystructure14AnalysedscenariosEaEnergyAnalyses’

referenceprojectiontowards2050willbeutilisedasabasisforthepresentstudy,withkeyflexibilityaspectsvaryingacrossthreescenarios.I.A“Reference”

scenarioreflectingfrozenpolicyandlimiteddevelopmentofDRtechnologies.Thereferencedisplaysrelativelylowlevelsofflexibility,includinginflexibleelectricityconsumptionpatternsamongacertainportionofthePtXcapacity.II.ThePtXsectorisexpectedtoprovidethehighestlevelofflexibilityinthesysteminupcomingyears,duetoitsdemandmagnitudebutalsocharacteristics.Therefore,anintermediatescenario(“PtX

Flex”)

willbeanalysedtoshedlightonthevaluethatPtXrelatedflexibilitybringstothesystemontopofreferencecase.III.Finally,themostflexiblescenario(“Flex”),

willreflecttheadditionoffurtherdemand-sideflexibilityactionsineachdemandcategory,showcasingtheoverallemergedvaluefromthedeploymentofdifferentflexibilitymeasures.Anoverviewofthevaryingaspectsbetweenscenarioscanbeseeninthefollowingslide:15DefinitionofscenariosDemandbucketReferenceReference+PtXflexibility(“PtXFlex”)Flexibilityscenario(“Flex”)Classic2,5%fuel-shift(permanentreductionAsReferenceindemand)10%fuel-shift(permanentreductionindemand)20%load-shift(upto2hours).5%load-shift(upto2hours).25%realisedin2025,50%in2030,100%by2050.25%realisedin2025,50%in2030,100%by2050.Electricvehicles20%oftotalloadforelectricroadtransportwillparticipateinflexiblechargingandbeabletomoveplannedchargingbyupto4hours.AsReference65%oftotalloadforelectricroadtransportwillparticipateinflexiblechargingandbeabletomoveplannedchargingbyupto4hours.50%oftotalloadV2G“fit”.15%oftotalloadV2G“fit”.25%realisedin2025,50%in2030,100%by2050.25%realisedin2025,50%in2030,100%by2050.IndividualheatingFixedconsumptionpattern.AsReferenceAsReferenceFlexibleheatgenerationbyadjustmentstoinitialdemandprofile.Averagedemandcanbemoved3hours.25%realisedin2025,50%in2030,100%by2050.AsReferenceplus:DistrictheatingutilitiesFlexibilityconsistsoftheoptiontofulfiltheheatdemandbyelectricityorotherheatgeneration,dependingonthepowerprices.Themodelmayinvestinsteeltanksandpitstorages.Load-shiftamongdistrictheatingconsumers:2025:4hoursflex,25%realised2030:5hoursflex,50%realised2050:6hoursflex,75%realisedAsReference+PtXflexibilityThemodelmayinvestinsteeltanksonly.75%ofPtXdemandoperatesflexible100%flexiblePtXload.Power-to-X25%ofPtXdemandfollowsafixedModeloptimisedhydrogenstoragescanbeinstalledtoenableflexibleloadcurve(flatthroughouttheyear).useofelectrolysers,whiledemandismodelledconstant.Costofstoragereflectsthoseoflarge-scalecaverns,assumingahydrogenbackboneinfrastructureisavailabletoconnecthydrogenproducersdirectlytoconsumersandcentrallylocalisedlargescalehydrogencaverns.Factorsaffectingtherealisationofscenarios•

Severalfactorsaffecttheuptakeofdemandresponsetechnologiesincluding1.2.3.4.RegulatoryEnvironment:Governmentpoliciesandregulationscangreatlyimpactdemandresponseadoption.Supportivepolicies,incentives,andmandatescanencouragetheimplementationofdemandresponseprograms.TechnologyAvailabilityandMaturity:Theavailabilityandmaturityofdemandresponsetechnologiesplayacrucialrole.Ifadvancedandcost-effectivetechnologiesarereadilyaccessible,itbecomeseasierforconsumersandbusinessestoimplementdemandresponsestrategies.ConsumerAwarenessandEducation:Lackofawarenessorunderstandingofdemandresponsecanbeabarrier.Effectiveeducationandoutreachprogramscanhelpconsumersandbusinessesmakeinformeddecisions.ElectricitypricesandGridneeds:Theeconomicbenefitofbeingflexibledependsonthestateofthegridandthecompositionofpowersupplyetc.Strongerincentiveswillencouragemoredemandresponse.•

Thereferencescenarioisintendedtoreflectasituationwherefactors1-3donotimproveconsiderablycomparedtotoday(factor4isconsideredwithinthemodelling*).•

Theflexibilityscenariosshowdevelopments,wheretheregulatoryenvironment,technologydevelopmentandconsumerawarenessfacilitatedemandresponse.*Themodellingconsidersbenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.Demand-sideflexibilitymeasuresinEuropeo

Electricvehiclesdemandincludesallelectricityforroadtransport.Thisdemandisflexible,andanincreasingsharecanbemovedfor4hours.Thus,themodellingaccountsforsmartcharging.Vehicle-to-gridsolutionscanalsobeenabled.TotalElectricityDemandProgression3.000o

Electricityforindividualheatingincludeselectricityconsumptionforspaceheatinginbuildings,whichismodelledasheatdemand.Thedemandissuppliedbyheatpumps,directelectricheatingandelectricboilers.Apartoftheindividualheatdemandcanbeconsideredflexible,withtheoptionofload-shiftinginfuturehours.2.5002.0001.5001.000500o

Electricityfordistrictheatingisbasedonmodeloptimization.Heatpumpsandelectricboilersareamongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-baseddistrictheatinggenerationfromheatonlyboilersorCHP.0o

ElectricityforP2Xisincludedbasedontheconsumptionofe-gasses,e-liquidsandhydrogen.AP2Xefficiencyof70%isassumedforhydrogenand60%fore-gassesande-liquids.Ifprofitable,storagescanbeinstalledtomoveportionsofthedemand,henceprovidingfurtherflexibilitytothesystem.202520302050Electricityconsumption:ClassicdemandElectricityconsumption-HSDCsElectricitytoindustrialelectrificationElectricitytoP2XElectricitytodistrictheatingElectricitytoindividualheatingo

Thelevelofflexibilityintheclassicdemandisrisingfrom2020towards2050againsttheaveragehourlydemand.Thedemandcanbemovedfor2hoursbypayinganactivationprice.Thisdemandincludesindustrythatalsohaveflexibilitytomoveproductiontolowpricehours.Electricityconsumption:ElectricVehiclesNote:ooHSDCs:HyperScaleDataCentersClassicdemandreflectspowerusefor:Industry,Service,Households,Agriculture.oIllustratedannualdemandlevelsreflecttheanalysed“Flex”

scenarioasdescribedinupcomingsections.18ReferenceFlexibilityonclassicdemand:LowVREweek(W48),2050Assumptionsondemandresponseforclassicelectricitydemand(households+industry)arebasedonanestimateoflong-termflexibilityagainsttheaveragedemandin2050.Demandresponseisimplementedasapotentialtoshiftofdemandintimeforupto2hours.Forcomparison,ENTSO-EreportedaverageDSR(Demandsideresponse)ofroughly9%ofaveragedemandin2040intheTYNDP2018GlobalClimateActionscenario.Flex50%offlexibilityisactivatedatacostof15€/MWh,

whiletheremaining50%offlexibilityisactivatedat30€/MWh,

meaningthatthedifferencebetweenachievableelectricitypriceshastobeatleast15€/MWh,

beforeloadshiftingtakesplace.Deploymentoflocallydistributedbatterysolutions(forexampleresidentialbatteriesincombinationwithrooftopPV)arenotconsideredinthemodellingandcouldprovideaportionofthisflexibilitypotential.Utilityscalebatteriesarenotincludedintheestimateshereastheyaresubjecttoexplicitoptimisation.Note:19oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.FlexibilityonelectricvehiclesChargingpatternsIllustrationofchargingpatternsandlimits(2030)Chargingpatternsforelectricvehiclesareassumedtobeflexiblerelativetoaninitialchargingprofile.Theinitialchargingprofileisbasedonestimatesofimmediatechargingprofilesaccordingtodrivingpatterns(Fullbluelineforweekdaysandfullgreylineforweekends).1ThesechargingprofileswouldensureEV’s

arefullychargedasfastaspossibleafterdriving.Thus,chargingprofilefollowpeakcommutinghourswithalittletimelag.Chargingpatternsarebasedonresearchonpersonalvehicles,butareusedheretorepresentallelectricityuseforroadtransport.12%10%8%6%4%Onlyashareofallvehiclesareassumedtobeflexible,whichleadstocertainminimum(reddashedline)andmaximum(bluedashedline)loadsforchargingelectricvehiclesatalltimes.Theresultingpotentialloadpatternsexcludeoptionforvehicle-to-gridtechnologies,whichcouldsignificantlyincreaseflexibilityoptions,albeitatahighercost,totakeintoaccounttechnologyneedsandlifetimereductionsonbatteriesduetoadditionalcycling.2%0%AllvehiclesMaximumallvehiclesAllvehicles(Weekend)Minimumallvehicles(Non-flexiblevehicles)1Source:Liu,Z.,Nielsen,A.H.,&Wu,Q.(2016).OptimalOperationofEVsandHPsintheNordicPowerSystem.TechnicalUniversityofDenmark,DepartmentofElectricalEngineering.20LimitsonflexibilityofelectricvehiclesTimeshiftingFlexibilityisimplementedasapotentialtoshifttheaveragechargingload(oftheflexiblevehicles)ofupto4hoursintime.EnergydemandIllustrationofchargingpatternsandlimits(2030)hastobeservedovera24hourperiod,andallenergydemandhastobeservedby7aminthemorning,whereallEVsarechargedtothedesiredlevel12%10%8%6%4%2%0%RestrictiononflexibilityFlexibilityofchargingforelectricvehiclesissubjecttoanumberofrestrictions,whichdevelopovertimeoOnlyafractionofvehiclesparticipateinflexiblecharging,meaningtheremainingvehiclewillfollowtheinitialchargingpatternatalltime.Themaximumchargingislimitedtoamultipleoftheestimatedpeakdemandoftheinitialprofileo

Maximumchargingforflexiblevehiclescannotexceed125%ofthepeakoftheirinitialchargingprofile.o

Flexibilityisactivatedatacostof15€/MWh

independentoftimedifference.Thismeans,thedifferencebetweenachievableelectricitypriceshastobeatleast15€/MWh,

beforeloadshiftingtakesplace.Foranaveragepersonalvehiclewithannualdrivingrangesof15.000–

20.000kmandelectricitydemandofaround3MWh/year,thiscorrespondsto45€/year.AllvehiclesFlexiblevehiclesMaximumflexiblevehicles21ReferenceFlexibilityonelectricvehiclesTheresultingmaximumcapacitytoincreasechargingorinterruptcharging(providingupregulationtothesystem)isshownontheright.Theseflexibilitiesarewellbelowtechnicalaccumulatedbatteryloadingandvolumeinthesystem,whichareupto18timeshigher.Flexibilityinchargingpatternsisusedindispatchoptimisationasillustrated,showingamoveawayfrompeakloadininitialchargingprofileattheexpenseofhigherpeaks.FlexNote:22oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.ReferenceLimitsonflexibilityfromindividualheatingElectricityusedforheatingcanbeflexiblebyexploitingheatcapacityinbuildingsandhotwatertanks.Theinitialdemandprofilefollowstheheatdemand,whichisdependentonhotwaterusageandoutsidetemperature.Anincreasingshareofbuildingsareparticipatinginprovidingflexibilitytothesystembyallowingtheaverageseasonaldemandtobeshiftedbyupto2hours.Loadforbuildingsnotparticipatinginflexibleheatingwillhavetobeservedatalltimes.Maximumloadforindividualheatingcannotexceedmaximumannualpeakdemand,whichiswellbelowthetotalcumulativeinstalledtechnicalcapacityofheatpumps.FlexHeatdemandhastobesuppliedwithin24hoursandthuscannotbeshiftedacrossdays.Flexibilityisactivatedatacostof10€/MWh,

meaningthedifferencebetweenachievableelectricitypriceshastobeatleast10€/MWh,

beforeloadshiftingtakesplace.Note:23oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.ModelResults25PowerGenerationCapacitiesPowergenerationcapacityOther3.500BatteriesSolar3.0002.5002.0001.5001.000500Twomainpatternscanbeidentifiedbetweenthedevelopedscenariosandthereferencecasewhenmovingto2050:OnshorewindOffshorewindHydroI.WhiletransitioningtoatotallyflexiblePtXoperationbehaviour(“PtX

Flex”),

batteryinvestments,whichaidthemodeltoshiftpowerfromcheapertimeslicestomoreexpensiveones,arereplacedbyhighersolarPVcapacitiesandH2storages.Theadditionalflexibilityinthehydrogensectorhelpsaveinvestmentsinbatteriesinthepowersector.UsingPVwithlowLCOE,hydrogenisstoredandutilisedacrosstimesegments.PumpedhydroBiogasBiomassWaste0CoalNuclear202520302050II.Whenaddingfurtherdemandsideflexibilitymeasurestothesystem,similarpatternsasin“PtX

Flex”

areobserved,approximatelyexaggeratedby50%,inparalleltoanadditionaldecreaseof93GWofgasand17GWofoffshorewindgenerators.Withtheopportunityofmoreflexibledemand,opportunitiesofreducingthecontributionofmoreexpensivemarginalgenerators(gaspeakers)orfurthermarginalinvestments(offshorewind)canbeharvested.Similar,butofsmallermagnitudeeffects,canbealsoobservedamongothercategoriesinearlieryears.DifferencetoReferenceOther200100BatteriesSolar0OnshorewindOffshorewindHydro-100-200-300-400-500PumpedhydroBiogasPtXFlexFlexibilityPtXFlexFlexibilityPtXFlexFlexibility202520302050BiomassWaste26CoalPowergenerationPowergenerationBatteriesSolar7.0006.0005.0004.0003.0002.0001.0000OnshorewindOffshorewindOtherObservinghighertotalelectricstoragecontributionstothepowermixevenduringloweroverallcapacitiessignalisethatthesystemstillfindsvalueinshiftingpoweracrosstimestepsbutwithlowerpeaksthatinthereference.HydroBiogasBiom

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论