




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年湖北省襄阳市数学九年级第一学期开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.72、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为()A. B. C. D.3、(4分)甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定4、(4分)如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是()A.5m B.10m C.15m D.20m5、(4分)已知y是x的一次函数,下表中列出了部分对应值:x-101y1m-1则m等于()A.-1 B.0 C. D.26、(4分)某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐()甲乙丙丁平均分92949492方差35352323A.甲 B.乙 C.丙 D.丁7、(4分)为了解我市八年级8000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计,下列说法正确的是()A.这种调查方式是普查 B.每名学生的数学成绩是个体C.8000名学生是总体 D.500名学生是总体的一个样本8、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为()A.18 B.27 C.36 D.42二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在一只不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,这些球除颜色外都相同,将球搅匀,从袋子中任意摸出一个球,摸到_____球可能性最大.10、(4分)若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程有整数解,则满足条件的整数a的值之和为_____.11、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.12、(4分)已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)13、(4分)关于x的方程(a≠0)的解x=4,则的值为__.三、解答题(本大题共5个小题,共48分)14、(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点.求证△ADE≌△CBF15、(8分)求不等式(2x﹣1)(x+1)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣1.∴不等式的解集为x>或x<﹣1.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣1)(x+1)<0的解集.(2)求不等式≥0的解集.16、(8分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=-2,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________.17、(10分)如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.18、(10分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:(收集数据)30608150401101301469010060811201407081102010081(整理数据)课外阅读时间等级人数38(分析数据)平均数中位数众数80请根据以上提供的信息,解答下列问题:(1)填空:______,______,______,______;(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.20、(4分)在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C21、(4分)如图,中,是延长线上一点,,连接交于点,若平分,,则________.22、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,若再补充一个条件就能使矩形ABCD成为正方形,则这个条件是(只需填一个条件即可).23、(4分)把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.二、解答题(本大题共3个小题,共30分)24、(8分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.25、(10分)某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.26、(12分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题2、A【解析】
由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.【详解】解:∵AD′=AD=2,
,
∴,
∵C′D′=2,C′D′∥AB,
∴C′(2,),
故选A.本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.3、A【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、D【解析】
根据三角形中位线定理可得到BC=2DE,可得到答案.【详解】∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴BC=2DE=20m,故选D.本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.5、B【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.【详解】设一次函数解析式为y=kx+b,把(−1,1)、(1,−1)代入解得,所以一次函数解析式为y=−x,把(0,m)代入得m=0.故答案为:B.此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.6、C【解析】在这四位同学中,乙、丙的平均分一样,但丙的方差小,成绩比较稳定,由此可知,可推荐丙,故选C.7、B【解析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考察的对象是我校八年级学生期中数学考试成绩,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A、很明显,这种调查方式是抽样调查.故A选项错误;B、每名学生的数学成绩是个体,正确;C、8000名学生的数学成绩是总体,故C选项错误;D、500名学生的数学成绩是总体的一个样本,故D选项错误,故选B.本题考查了抽样调查与全面调查,总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考察的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、C【解析】
根据三角形的中位线定理可得OE=BC,由△OAE的周长为15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得▱ABCD的周长.【详解】∵AE=EB,AO=OC,∴OE=BC,∵AE+AO+EO=15,∴2AE+2AO+2OE=30,∴AB+AC+BC=30,∵AC=12,∴AB+BC=18,∴▱ABCD的周长为18×2=1.故选C.本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是会灵活运用所学知识解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9、红.【解析】
根据概率公式先求出红球、白球和黄球的概率,再进行比较即可得出答案.【详解】∵不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,∴从袋子中任意摸出一个球,摸到红球的概率是:=,摸到白球的概率是=,摸到黄球的概率是,∴摸到红球的概率性最大;故答案为:红.此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率是解题关键.10、1【解析】
根据题意得到关于的不等式组,解之得到的取值范围,解分式方程根据“该方程有整数解,且”,得到的取值范围,结合为整数,取所有符合题意的整数,即可得到答案.【详解】解:函数的图象经过第一,三,四象限,解得:,方程两边同时乘以得:,去括号得:,移项得:,合并同类项得:,系数化为1得:,该方程有整数解,且,是2的整数倍,且,即是2的整数倍,且,,整数为:2,6,,故答案为1.本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.11、(1,1)(-1,-1).【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对角线交点D的坐标为(-1,-1),故答案为:(1,1);(-1,-1)本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.12、>【解析】
根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.【详解】∵图像与y轴的交点在负半轴上,∴b<0,∵y随x的增大而减小,∴k<0,∴kb>0.故答案为>.本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.13、4【解析】
将x=4代入已知方程求得b=4a,然后将其代入所以的代数式求值.【详解】∵关于x的方程(a≠0)的解x=4,∴,∴b=4a,∴=,故答案是:4.此题考查分式方程的解,分式的化简求值,解题关键在于求得b=4a三、解答题(本大题共5个小题,共48分)14、见解析【解析】
由平行四边形的性质得出OA=OC,AD=BC,AD∥BC,得∠DAE=∠BCF,由E,F分别是OA,OC的中点得AE=CF,由SAS证明△ADE≌△CBF即可;【详解】证明:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC,OA=OC∴∠DAE=∠BCF又∵E,F分别是OA,OC的中点∴AE=CF在△ADE和△CBF中AD=CD∴△ADE≌△CBF(SAS).本题考查了平行四边形的判定与性质、全等三角形的判定;熟练掌握平行四边形的性质是解决问题的关键.15、(1)﹣1<x<;(2)x≥1或x<﹣2.【解析】
(1)、(2)根据题意得出关于x的不等式组,求出x的取值范围即可.【详解】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相除,积为正”可得①,②,解①得,x≥1,解②得,x<﹣2,故不等式组的解集为:x≥1或x<﹣2.故答案为(1)﹣1<x<;(2)x≥1或x<﹣2.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16、(1)=;(2).【解析】
(1)根据题意可知,,,,,…由此得出第n个等式:an=;(2)将每一个等式化简即可求得答案.【详解】解:(1)∵第1个等式:,第2个等式:,第3个等式:,第4个等式:,∴第n个等式:an=;(2)a1+a2+a3+…+an=(=.故答案为;.此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.17、(1)证明见解析;(2).【解析】
(1)由DE∥AC,CE∥BD可得四边形OCED为平行四边形,又AC⊥BD从而得四边形OCED为矩形;(2)过点O作OH⊥BC,垂足为H,由已知可得三角形OBC、OCD的面积,BC的长,由面积法可得OH的长,从而可得三角形OCF的面积,三角形OCD与三角形OCF的和即为所求.【详解】(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四边形OCED为矩形.(2)∵菱形ABCD,∴AC与BD互相垂直平分于点O,∴OD=OB=BD=6,OA=OC=AC=8,∴CF=CO=8,S△BOC=S△DOC==24,在Rt△OBC中,BC==10,.作OH⊥BC于点H,则有BC·OH=24,∴OH=,∴S△COF=CF·OH=.∴S四边形OFCD=S△DOC+S△OCF=.本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH的长度是解题关键.18、(1)a=5,b=4,m=81,n=8;(2)120人.【解析】
根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)结果.【详解】(1)由统计表收集数据可知,,,;(2)(人).答:估计达标的学生有120人.此题考查中位数、众数的定义,用样本估计总体,解题关键在于看懂图中数据一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.【详解】解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2,∴AE=,∴GF=AE=.故答案为.本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.20、-2,0【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.21、1【解析】
平行四边形的对边平行,AD∥BC,AB=AE,所以BC=2AF,根据CF平分∠BCD,可证明AE=AF,从而可求出结果.【详解】解:∵CF平分∠BCD,
∴∠BCE=∠DCF,
∵AD∥BC,
∴∠BCE=∠DFC,
∴∠BCE=∠EFA,
∵BE∥CD,
∴∠E=∠DCF,
∴∠E=∠BCE,
∵AD∥BC,
∴∠BCE=∠EFA,
∴∠E=∠EFA,
∴AE=AF=AB=5,
∵AB=AE,AF∥BC,
∴△AEF∽△BEC,∴,∴BC=2AF=1.
故答案为:1.本题考查平行四边形的性质和相似三角形的判定和性质,平行四边形的对边平行,以等腰三角形的判定和性质.22、AB=BC(答案不唯一).【解析】
根据正方形的判定添加条件即可.【详解】解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.23、0.1【解析】
利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,
∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】
(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 骨肉分离机行业直播电商战略研究报告
- 聚酯型人造大理石台面行业跨境出海战略研究报告
- 钳子行业直播电商战略研究报告
- 针织衫行业直播电商战略研究报告
- Unit 4 Revision Lesson 13 (教学设计)-2024-2025学年北京版英语五年级下册
- 2025上海复源教育科技有限公司招聘10人笔试参考题库附带答案详解
- 信用证的培训
- 银信联合公司培训
- 2025年职业院校团组织工作计划
- 门诊皮试阳性护理查房
- 《气象灾害预警信号》课件
- 无机保温砂浆外墙外保温系统施工工艺课件
- 高三二轮复习:产业转移以富士康的企业转移为例课件
- 矿井维修电工技能鉴定考试题(高级工)
- 高中语文《祝福》“谁是凶手”系列之祥林嫂死亡事件《祝福》探究式学习(教学课件) 课件
- 电子商务税收法律问题
- 水平泵房水泵联合试运转方案及安全技术措施
- 《监察机关监督执法工作规定》测试题试题含答案
- 中国政法大学社会主义市场经济概论重点归纳及复习试题(杨干忠版)
- 《蚂蚁和西瓜》课件
- 计量支付用表承包人
评论
0/150
提交评论