版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.1条件概率及全概率公式考法一条件概率【例1-1】(2023·云南)某校有7名同学获省数学竞赛一等奖,其中男生4名,女生3名.现随机选取2名学生作“我爱数学”主题演讲.假设事件为“选取的两名学生性别相同”,事件为“选取的两名学生为男生”,则(
)A. B. C. D.【例1-2】(2024·陕西汉中)袋中有除颜色外完全相同的6个小球,其中4个白球和2个红球,现从袋中不放回地连取两个.在第一次取得白球前提下,则第二次取得红球的概率为(
)A.0.25 B.0.4 C.0.5 D.0.6【一隅三反】1.(2024·辽宁)小张、小王两家计划国庆节期间去辽宁游玩,他们分别从“丹东凤凰山,鞍山千山,本溪水洞,锦州笔架山,盘锦红海滩”这五个景点中随机选择一个游玩,记事件A:“两家至少有一家选择丹东风凰山”,事件B:“两家选择景点不同”.则概率(
)A. B. C. D.2.(2024·全国·高二假期作业)现有若干大小、质地完全相同的黑球和白球,已知某袋子中装有3个白球、2个黑球,现从袋中随机依次摸出2个球,若第一次摸出的是白球,则放回袋中;若第一次摸出的是黑球,则把黑球换作白球,放回袋中.记事件“第一次摸球摸出黑球”,事件“第二次摸球摸出白球”,则(
)A. B. C. D.3.(2024·北京)俗话说“斜风细雨不须归”,在自然界中,下雨大多伴随着刮风.已知某地8月份刮风的概率为,下雨的概率为,既刮风又下雨的概率为.记事件为“8月份某天刮风”,事件为“8月份某天下雨”,则(
)A. B. C. D.4.(2024·江西)我国的生态环境越来越好,旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件为“两位游客选择的景点相同”,则等于(
)A. B. C. D.考法二条件概率性质【例2-1】(2024·湖北)已知,是一个随机试验中的两个事件,若,,则等于(
)A.3 B.4 C.5 D.6【例2-2】(2023上·高二课时练习)下列式子成立的是(
)A. B.C. D.【例2-3】(2023·云南保山)(多选)为随机事件,已知,,下列结论中正确的是(
)A.若为互斥事件,则B.若为互斥事件,则C.若相互独立,则D.若,则相互独立【一隅三反】1.(2024·广西)(多选)设,是一个随机试验中的两个事件,且,,,则下列结论中正确的是(
)A. B.C. D.2.(2024·福建)(多选)已知随机事件满足,,,则下列说法正确的是(
)A.不可能事件与事件互斥B.必然事件与事件相互独立C.D.若,则3.(2024下·全国·高二随堂练习)(多选)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为,“第一次取得白球”为,“第二次取得黑球”为,“第二次取得白球”为,则(
)A. B.C. D.4.(2023·河南平顶山)(多选)一个口袋中有除颜色外完全相同的3个红球和2个白球,每次从中随机取出一个球,若取到红球,则往口袋里再放入一个白球,若取到白球,则往口袋里再放入一个红球,取出的球不放回.像这样取两次球,设事件为“第i次取到红球”,事件为“第j次取到白球”,事件C为“两次取到的球颜色相同”,则(
)A.与相互独立 B.C. D.考法三全概率公式【例3-1】(2024·黑龙江)某人外出出差,委托邻居给家里盆栽浇一次水,若不浇水,盆栽枯萎的概率为0.8;若浇水,盆栽枯萎的概率为0.1.若邻居浇水的概率为,该人回来盆栽没有枯萎的概率为0.83,则实数的值为(
)A.0.9 B.0.85 C.0.8 D.0.75【例3-2】(2024·河南南阳)长时间玩手机可能影响视力.据调查,某校学生大约的人近视,而该校大约有的学生每天玩手机超过1小时,这些人的近视率约为,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为(
)A. B. C. D.【一隅三反】1.(2024·黑龙江)小明参加答题闯关游戏,答题时小明可以从A,B,C三块题板中任选一个进行答题,答对则闯关成功.已知他选中A,B,C三块题板的概率分别为0.2,0.3,0.5,且他答对A,B,C三块题板中题目的概率依次为0.91,0.92,0.93.则小明闯关失败的概率是(
)A.0.24 B.0.14 C.0.077 D.0.0672.(2024·全国·高二假期作业)某批麦种中,一等麦种占80%,二等麦种占20%等麦种种植后所结麦含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为(
)A.0.48 B.0.52 C.0.56 D.0.653.(2023·湖北)某卡车为乡村小学运送书籍,共装有个纸箱,其中箱英语书、箱数学书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为(
)A. B. C. D.4.(2023·湖北)(多选)某儿童乐园有甲,乙两个游乐场,小王同学第一天去甲、乙两家游乐场游玩的概率分别为0.3和0.7,如果他第一天去甲游乐场,那么第二天去甲游乐场的概率为0.7;如果第一天去乙游乐场,那么第二天去甲游乐场的概率为0.6,则王同学(
)A.第二天去甲游乐场的概率为0.63B.第二天去乙游乐场的概率为0.42C.第二天去了甲游乐场,则第一天去乙游乐场的概率为D.第二天去了乙游乐场,则第一天去甲游乐场的概率为5.(2024·陕西汉中)某电子设备厂所用的元件由甲、乙两家元件厂提供,根据以往的记录,这两个厂家的次品率分别为0.01,0.03,提供元件的份额分别为0.90,0.10.设这两个厂家的产品在仓库里是均匀混合的,且无任何区分的标志,现从仓库中随机取出一个元件,取到的元件是次品的概率为.考法四贝叶斯公式【例4】(2024·福建)根据曲靖一中食堂人脸识别支付系统后台数据分析发现,高三年级小孔同学一周只去食堂一楼和二楼吃饭.周一去食堂一楼和二楼的概率分别为和,若他周一去了食堂一楼,那么周二去食堂二楼的概率为,若他周一去了食堂二楼,那么周二去食堂一楼的概率为,现已知小孔同学周二去了食堂二楼,则周一去食堂一楼的概率为(
).A. B. C. D.【一隅三反】1.(2024湖南)设有5个袋子中放有白球,黑球,其中1号袋中白球占,另外2,3,4,5号4个袋子中白球都占,今从中随机取1个袋子,从所取的袋子中随机取1个球,结果是白球,则这个球是来自1号袋子中的概率为(
)A. B. C. D.2.(2023·全国·高二课堂例题)张宇去某地参加会议,他乘汽车或飞机去的概率分别为、.如果他乘汽车或飞机前去,迟到的概率如图所示.结果他迟到了,求张宇乘的是汽车的概率.
3.(2023·湖南)某一地区患有某疾病的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04.现抽查了一个人,试验反应是阳性,问此人是患者的概率有多大?(保留小数点后四位)考法五综合运用【例5-1】(2024·吉林)中国传统文化中,过春节吃饺子,饺子是我国的传统美食,不仅味道鲜美而且寓意美好.现有甲、乙两个箱子装有大小、外观均相同的速冻饺子,已知甲箱中有3盒肉馅的“饺子”,2盒三鲜馅的“饺子”和5盒青菜馅的“饺子”,乙箱中有3盒肉馅的“饺子”,3个三鲜馅的“饺子”和4个青菜馅的“饺子”.问:(1)从甲箱中取出一盒“饺子”是肉馅的概率是多少?(2)若依次从甲箱中取出两盒“饺子”,求第一盒是肉馅的条件下,第二盒是三鲜馅的概率;(3)若先从甲箱中随机取出一盒“饺子”放入乙箱,再从乙箱中随机取出一盒“饺子”,从乙箱取出的“饺子”是肉馅的概率.【例5-2】(2023·河北保定)某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明外的其他参赛选手中,一、二、三类棋手的人数之比为5:7:8,小明与一、二、三类棋手比赛获胜的概率分别是0.6、0.5、0.4.(1)从参赛选手中随机抽取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手分别为一、二、三类棋手的概率.【一隅三反】1.(2023下·安徽芜湖·高二统考期末)(多选)一个不透明的袋子里,装有大小相同的个红球和个白球,每次从中不放回地取出一球,现取出个球,则下列说法正确的是(
)A.两个都是红球的概率为B.在第一次取到红球的条件下,第二次取到白球的概率为C.第二次取到红球的概率为D.第二次取到红球的条件下,第一次取到白球的概率为2.(2024上·黑龙江·高二校联考期末)(多选)已知编号为的三个盒子,其中1号盒子内装有一个1号球,一个2号球和两个3号球;2号盒子内装有一个1号球,两个3号球;3号盒子内装有两个1号球,三个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是(
)A.在第一次抽到3号球的条件下,第二次抽到2号球的概率为B.第一次抽到3号球且第二次抽到2号球的概率为C.第二次抽到2号球的概率为D.如果第二次抽到的是2号球,则它来自1号盒子的概率最大3.(2023下·湖北武汉·高二校联考期末)某中学篮球队根据以往比赛统计:甲球员能够胜任前锋,中锋,后卫三个位置,且出场概率分别为0.1,0.5,0.4.在甲球员出任前锋,中锋,后卫的条件下,篮球队输球的概率依次为0.2,0.2,0.7.(1)当甲球员参加比赛时,求该篮球队某场比赛输球的概率;(2)当甲球员参加比赛时,在该篮球队输了某场比赛的条件下,求甲球员在这一场出任中锋的概率;(3)如果你是教练员,应用概率统计的有关知识该如何使用甲球员?单选题1.(2024·北京昌平)已知某班级中,喜欢文学阅读的学生占75%,喜欢文学阅读而且喜欢科普阅读的学生占30%.若从这个班级的学生中任意抽取一人、则在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为(
)A.22.5% B.30% C.40% D.75%2.(2023·广东肇庆)已知,,,求(
)A. B. C. D.13.(2023·山东德州)掷一个均匀的骰子.记为“掷得点数大于”,为“掷得点数为奇数”,则为(
)A. B. C. D.4.(2023下·辽宁·高二辽宁实验中学校考阶段练习)某货车为某书店运送书籍,共箱,其中箱语文书、箱数学书、箱英语书.到达目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下的箱书中随机打开箱,结果是箱语文书、箱数学书,则丢失的一箱是英语书的概率为(
)A. B. C. D.5.(2024下·全国·高二随堂练习)袋子中装有大小、形状完全相同的3个白球和2个红球,现从中不放回地摸取两个球,已知第二次摸到的是红球,则第一次摸到红球的概率为(
)A. B. C. D.6.(2023上·上海·高二上海市第二中学校考阶段练习)下列各式中不能判断事件与事件独立的是(
)A.B.C.D.7.(2023下·黑龙江齐齐哈尔·高二齐齐哈尔市恒昌中学校校考期末)下列有关事件的说法正确的是(
)A.事件,中至少有一个发生的概率一定比,中恰有一个发生的概率大B.若,则事件,为对立事件C.若,为互斥事件,则D.若事件,,满足条件,和为互斥事件,则8.(2023下·浙江台州·高二统考期末)已知,,,,,均大于0,则下列说法不正确的是(
)A.B.若,则C.若,则D.多选题9.(2023·吉林长春·)盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件“第次取球,取到白球”,事件“第次取球,取到正品”,.则下列结论正确的是(
)A. B.C. D.10.(2024·全国·高二假期作业)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件“第一次取出的是红球”,事件“第二次取出的是红球”,事件“取出的两球同色”,事件“取出的两球不同色”,则(
)A.与互斥 B.与互为对立事件C.与相互独立 D.11.(2023下·山东聊城·高二统考期末)若、分别为随机事件、的对立事件,,,则下列结论正确的是(
)A. B.C. D.若,则12.(2024·河南)深圳某中学社团招新活动开展得如火如荼,小王、小李、小张三位同学计划篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为,且每人选择相互独立,则(
)A.三人选择社团一样的概率为B.三人选择社团各不相同的概率为C.至少有两人选择篮球社的概率为D.在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为填空题13.(2024上·山东潍坊·高二昌乐二中校考期末)已知某地区内狗的寿命超过15岁的概率是0.6,超过20岁的概率是0.2.那么该地区内,一只寿命超过15岁的狗,寿命能超过20岁的概率是.14.(2023上·河南南阳·高二南阳中学校考阶段练习)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件“第一次取出的是红球”,事件“第二次取出的是红球”,事件“取出的两球同色”,事件“取出的两球不同色”,则以下命题所有正确的序号是.①A与B互斥
②C与D互为对立事件③A与C相互独立
④15.(2024下·全国·高二随堂练习)甲、乙两名游客慕名来到四川旅游,准备分别从九寨沟、峨眉山、海螺沟、都江堰、青城山这个景点中随机选一个.事件甲和乙选择的景点不同,事件甲和乙恰好有一人选择九寨沟.则条件概率;16.(2023下·河北张家口·高二统考期末)已知离散型随机事件A,B发生的概率,,若,事件,,分别表示A,B不发生和至少有一个发生,则,.解答题17.(2024上·广东广州·高二华南师大附中校考期末)现有10个球,其中5个球由甲工厂生产,3个球由乙工厂生产,2个球由丙工厂生产.这三个工厂生产该类产品的合格率依次是,,.现从这10个球中任取1个球,设事件为“取得的球是合格品”,事件分别表示“取得的球是甲、乙、丙三个工厂生产的”.(1)求;(2)求.18.(2024上·山东潍坊·高二统考期末)现有两台车床加工同一型号的零件,第1台车床加工的零件次品率为6%,第2台车床加工的零件次品率为5%,加工出来的零件混放在一起已知第1台车床加工的零件数与第2台车床加工的零件数之比为2:3,从这些零件中任取一个.(1)求这个零件是次品的概率;(2)已知这个零件是次品,求它是第一台车床加工的概率.19.(2023下·福建泉州·高二校考期末)在三个地区爆发了流感,这三个地区分别有的人患了流感,假设这三个地区的人口数的比为3:5:2,现从这三个地区中任意选取一个人(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A地区的概率.20.(2023上·重庆北碚·高二西南大学附中校考期中)为了考察学生对高中数学知识的掌握程度,准备了甲、乙两个不透明纸箱.其中,甲箱有2道概念叙述题,2道计算题;乙纸箱中有2道概念叙述题,3道计算题(所有题目均不相同).现有A,B两个同学来抽题回答;每个同学在甲或乙两个纸箱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生成对抗网络(GAN)模型生成质量的定量研究
- 二零二五年度拆迁安置房交易合同范本3篇
- 门店进货验收质量管理制度范文
- 2024版二手房装修费买卖合同
- 二零二五年度煤矿安全生产合同3篇
- 汽车美容店服务员工作总结
- 娱乐行业会计岗位职责概述
- 服装行业销售技巧培训总结
- 二零二五年度服务员招聘及职业发展规划合同3篇
- 孕产护理科护士的工作心得
- 设立数字经济产业园公司商业计划书
- 仙桃市仙桃市2023-2024学年七年级上学期期末数学检测卷(含答案)
- 智慧农场整体建设实施方案
- 航空公司个人年终总结(共12篇)
- DB33 1014-2003 混凝土多孔砖建筑技术规程
- 吞咽困难查房
- 炼油化工建设项目建设规模产品方案及总工艺流程
- 教师培训《从教走向学-在课堂上落实核心素养》读书分享读书感悟读后感教学课件
- GB/T 42437-2023南红鉴定
- 购房屋贷款合同协议书
- 工程监理大纲监理方案服务方案
评论
0/150
提交评论