2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】_第1页
2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】_第2页
2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】_第3页
2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】_第4页
2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年广东省江门市数学九年级第一学期开学复习检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数y=kx+b(k<0,b>0)的图象可能是(

)A.

B.

C.

D.2、(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.93、(4分)要使式子有意义,则实数的取值范围是()A. B. C. D.4、(4分)如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A.74cm B.64cm C.54cm D.44cm5、(4分)二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>16、(4分)下列式子一定是二次根式的是()A. B. C. D.7、(4分)若等腰的周长是,一腰长为,底边长为,则与的函数关系式及自变量的取值范围是A. B.C. D.8、(4分)如果分式的值为零,则a的值为()A.±1 B.2 C.﹣2 D.以上全不对二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是_______队.10、(4分)一个正多边形的每个内角度数均为135°,则它的边数为____.11、(4分)若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是______.12、(4分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.13、(4分)如图,在等腰梯形ABCD中,AD∥BC,如果AD=4,BC=8,∠B=60°,那么这个等腰梯形的腰AB的长等于____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,直线与轴,轴的交点分别为,直线交轴于点,两条直线的交点为,点是线段上的一个动点,过点作轴,交轴于点,连接.求的面积;在线段上是否存在一点,使四边形为矩形,若存在,求出点坐标:若不存在,请说明理由;若四边形的面积为,设点的坐标为,求出关于的函数关系式,并写出自变量的取值范围.15、(8分)已知:如图,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E,F,求证:四边形CEDF是正方形.16、(8分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.17、(10分)阅读下面的解答过程,然后答题:已知a为实数,化简:解:原式①②(1)上述解答是否有错误?(2)若有错误,从第几步开始出现错误?(3)写出正确的解答过程。18、(10分)如图,在平行四边形中,点、分别是、上的点,且,,求证:(1);(2)四边形是菱形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是

.20、(4分)已知,那么________.21、(4分)在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.22、(4分)数据1,2,3,4,5的方差是______.23、(4分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.二、解答题(本大题共3个小题,共30分)24、(8分)如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.(1)这个云梯的底端B离墙多远?(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?25、(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,BE=DF,连接AE,AF,EF,G为EF中点,连接AG,DG.(1)如图1:若AB=3,BE=1,求DG;(2)如图2:延长GD至M,使GM=GA,过M作MN∥FD交AF的延长线于N,连接NG,若∠BAE=30°.求证:26、(12分)对于自变量的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量不同的取值范围内,对应的函数表达式也不同.例如:是分段函数,当时,函数的表达式为;当时,函数表达式为.(1)请在平面直角坐标系中画出函数的图象;(2)当时,求的值;(3)当时,求自变量的取值范围.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,

∴一次函数y=kx+b的图象经过第二、四象限.

又∵b>0时,

∴一次函数y=kx+b的图象与y轴交与正半轴.

综上所述,该一次函数图象经过第一象限.故答案为:C.考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.3、C【解析】

根据二次根式的性质,被开方数大于等于0,就可以求解.【详解】根据题意得:x−2⩾0,解得x⩾2.故选:C此题考查二次根式有意义的条件,解题关键在于掌握其性质4、B【解析】

首先过A作AM垂直PC于点M,过点B作BN垂直DQ于点N,再利用三角函数计算AM和BN,从而计算出MN.【详解】解:根据题意过A作AM垂直PC于点M,过点B作BN垂直DQ于点N所以故选B.本题主要考查直角三角形的应用,关键在于计算AM的长度,这是考试的热点问题,应当熟练掌握.5、C【解析】

由二次根式有意义的条件可知a-1≥0,解不等式即可.【详解】由题意a-1≥0解得a≥1故选C.本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.6、C【解析】

根据二次根式的定义:形如(a≥0)的式子叫做二次根式,逐一判断即可.【详解】解:A.当x=0时,不是二次根式,故本选项不符合题意;B.当x=-1时,不是二次根式,故本选项不符合题意;C.无论x取何值,,一定是二次根式,故本选项符合题意;D.当x=0时,不是二次根式,故本选项不符合题意.故选C.此题考查的是二次根式的判断,掌握二次根式的定义是解决此题的关键.7、C【解析】

根据题意,等腰三角形的两腰长相等,即可列出关系式.【详解】依题意,,根据三角形的三边关系得,,得,,得,得,,故与的函数关系式及自变量的取值范围是:,故选.本题考查了一次函数的应用,涉及了等腰三角形的性质,三角形的三边关系,做此类题型要注意利用三角形的三边关系要确定边长的取值范围.8、B【解析】

根据分式的值为零的条件可得:|a|﹣1=2且a+1≠2,从而可求得a的值.【详解】解:由题意得:|a|﹣1=2且a+1≠2,解得:a=1.故选B.此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为2;(1)分母不为2.这两个条件缺一不可.二、填空题(本大题共5个小题,每小题4分,共20分)9、甲【解析】

根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】∵<,∴身高较整齐的球队是甲队。故答案为:甲.此题考查极差、方差与标准差,解题关键在于掌握其性质.10、8【解析】

试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.考点:多边形的内角和11、14cm【解析】

根据三角形中位线定理得到EF=BC,DF=AB,DE=AC,根据三角形的周长公式计算即可.【详解】解:∵△ABC的周长为28,∴AB+AC+BC=28cm,∵点D、E、F分别是BC、AB、AC的中点,∴EF=BC,DF=AB,DE=AC,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),故答案为:14cm.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、8.1.【解析】

直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=3,∵AC=4,BD=7,∴AO=2,OB=,∴△ABO的周长=AO+OB+AB=2++3=8.1.故答案为:8.1.此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.13、4【解析】

过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【详解】借钱:过作AE∥DC,交BC于E,在等腰梯形ABCD中,AD∥BC,∴四边形AECD是平行四边形∴AB=AE,CE=AD=4∵∠B=60°,AB=AE,∴△ABE是等边三角形,∴AB=BE∵BE=BC-EC=8-4=4∴AB=4.故答案为:4本题考查平行四边形的性质和等边三角形的判定与性质.三、解答题(本大题共5个小题,共48分)14、(1)20;(2)存在;(3)S【解析】

(1)想办法求出A、D、C三点坐标即可解决问题;

(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;

(3)利用梯形的面积公式计算即可.【详解】解:在中,令,得解得,点的坐标为在中,令得解得,点的坐标为解方程组,得,点的坐标为存在,四边形为矩形,对于,当时,,点的坐标为把代入,解得点的坐标是本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.15、证明见解析【解析】

证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形DECF为矩形,∵∠BAC、∠ABC的平分线交于点D,∴DF=DE,∴四边形CFDE是正方形16、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套【解析】试题分析:(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得到利润最小值;(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.试题解析:(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,解得16≤x≤1,∵x是正整数,∴x=16或17或1.有以下生产三种方案:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,∴x=1时,y最小值=266,∴至少可获得利润266元(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.17、(1)有错误;(2)①;(3)【解析】

观察已知代数式,要使二次根式有意义,则,a≠0,-a3≥0,即a<0,考虑将两个二次根式写成最简二次根式的形式;将变形为、变形为,对其进行约分;接下来对所得式子进行整理,即可得到本题的答案.【详解】(1)有错误(2)①(3)本题主要考查了二次根式性质与化简,注意a是负数,不能改变符号.18、(1)证明见解析;(2)证明见解析.【解析】

(1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;

(2)由全等三角形的性质得出DA=DC,即可得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形∴∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴DE=DF;(2)由(1)可得△DAE≌△DCF∴DA=DC,又∵四边形ABCD是平行四边形∴四边形ABCD是菱形.本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、k>0【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限。由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。20、【解析】

直接利用已知得出,进而代入求出答案.【详解】解:∵,∴,∴.故答案为:.此题主要考查了代数式的化简,正确用b代替a是解题关键.21、30%.【解析】

因为圆周角是360°,种植苹果树面积的扇形圆心角是108°,说明种植苹果树面积占总面积的108°÷360°=30%.据此解答即可.【详解】由题意得:种植苹果树面积占总面积的:108°÷360°=30%.故答案为:30%.本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的分率等于该部分所对应的扇形圆心角的度数与360°的比值.22、1【解析】

根据方差的公式计算.方差.【详解】解:数据1,1,3,4,5的平均数为,故其方差.故答案为:1.本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23、1【解析】

根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:

90×50%+80×30%+85×20%

=45+24+17

=1(分).

答:该选手的最后得分是1分.

故答案为:1.本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.二、解答题(本大题共3个小题,共30分)24、(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.【解析】

(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;

(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.【详解】解:(1)设梯子的长度为x米,则云梯底端B离墙为x-5米。15x=25∴这个云梯的底端B离墙20米。(2)∵CO=AO-AC=15-8=7∴OD∴OD=24∴BD=OD-OB=24-20=4∴梯子的底部在水平方向右滑动了4米。此题主要考查了勾股定理得应用,关键是正确理解题意,掌握直角三角形两直角边的平方和等于斜边的平方.25、(1)DG=2;(2)MN+NA=3NG【解析】

(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出AB=3a,AE=2a,CE=(3-1)a,CF=(3+1)a,再由△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论