版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年安徽省芜湖市九上数学开学联考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,直线过点和点,则方程的解是()A. B. C. D.2、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<03、(4分)下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分C.平行四边形的对角相等D.平行四边形的对边相等4、(4分)已知(4+)•a=b,若b是整数,则a的值可能是()A. B.4+ C.4﹣ D.2﹣5、(4分)下列函数中,当x<0时,y随x的增大而减小的是()A.y=x B.y=2x–1 C.y= D.y=–6、(4分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B. C. D.7、(4分)已知,那么下列式子中一定成立的是()A. B. C. D.8、(4分)某班抽6名同学参加体能测试,成绩分别是1,90,75,75,1,1.则这组同学的测试成绩的中位数是()A.75 B.1 C.85 D.90二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.10、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.11、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.12、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.13、(4分)如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.三、解答题(本大题共5个小题,共48分)14、(12分)平面直角坐标系中,直线y=2kx-2k(k>0)交y轴于点B,与直线y=kx交于点A.(1)求点A的横坐标;(2)直接写出的x的取值范围;(3)若P(0,3)求PA+OA的最小值,并求此时k的值;(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.15、(8分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件)售价(万元/件)甲1214.5乙810两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.(1)与的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?16、(8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.17、(10分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.18、(10分)某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件.设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元).(1)请求出与之间的函数关系式(不用写出的取值范围);(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_____.20、(4分)已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.21、(4分)若个数,,,的中位数为,则_______.22、(4分)化简=_____.23、(4分)关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.二、解答题(本大题共3个小题,共30分)24、(8分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.25、(10分)如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE,求证:四边形AEFD是平行四边形.26、(12分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.【详解】解:∵直线y=ax+b过点B(−2,0),∴方程ax+b=0的解是x=−2,故选:B.此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.2、A【解析】
解:∵一次函数y=kx+b的图象经过一、三象限,∴k>1,又该直线与y轴交于正半轴,∴b>1.∴k>1,b>1.故选A.3、A【解析】∵平行四边形的对边相等、对角相等、对角线互相平分,∴B、C、D说法正确;只有矩形的对角线才相等,故A说法错误,故选A.4、C【解析】
找出括号中式子的有理化因式即可得.【详解】解:(4+)×(4-)=42-()2=16-3=13,是整数,所以a的值可能为4-,故选C本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.5、C【解析】
根据正比例函数、一次函数、反比例函数的性质依次判断即可.【详解】A、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;B、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;C、为反比例函数,k的值大于0,x<0时,y随x的增大而减小,符合题意;D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.此题考查正比例函数的性质,一次函数的性质,反比例函数的性质,熟记各性质定理并熟练解题是关键.6、B【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线7、D【解析】
根据比例的性质对各个选项进行判断即可.【详解】A.∵,∴3x=2y,∴不成立,故A不正确;B.∵,∴3x=2y,∴不成立,故B不正确;C.∵,∴y,∴不成立,故C不正确;D.∵,∴,∴成立,故D正确;故选D.本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.8、B【解析】
中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).【详解】解:将这组数据从小到大的顺序排列为:75,75,1,1,1,90,中位数是(1+1)÷2=1.故选:B.考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】
设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【详解】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2.故答案为2.本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.10、2【解析】试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).11、110cm1,cm.【解析】试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.考点:菱形的性质;勾股定理.12、【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.13、矩形5cm【解析】试题解析:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形.∴AC=BD∵AC=5cm∴BD=5cm三、解答题(本大题共5个小题,共48分)14、(1)点横坐标为2;(2);(3);(4)或.【解析】
(1)联立两直线方程即可得出答案;(2)先根据图像求出k的取值范围,再解不等式组即可得出答案;(3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;(4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.【详解】解:(1)根据题意得,解得点横坐标为2;(2)由图像可知k>0∴由2kx-2k>0,可得x>1;由2kx-2k<kx,得x<2,∴(3)如图,点关于直线的对称点为;连接交直线于点,此时最小,其值为;设直线的解析式为y=ax+b将和P的坐标代入得:解得∴直线的解析式为,当x=2时,y=.即,;(4)以为顶点的四边形是以为一条边的菱形,为等腰三角形,且为腰;或,①当时,,,解得;②当时,,,解得.或本题考查的是一次函数的综合,难度较大,涉及到了三角形边的性质、两点间的距离公式和等腰三角形等相关知识点,需要熟练掌握.15、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元【解析】
(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;(2)根据资金不多于20万元列出不等式组;(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.【详解】解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案为:w=0.5x+40;(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,故该公司最多购进10台甲种商品;(3)∵对于函数w=0.5x+40,w随x的增大而增大,∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.16、(1)见解析;(2)70°.【解析】
(1)结合中位线的性质证明即可;(2)先根据平行四边形的性质得到∠DEF=∠BAC,再根据题意证明∠DHF=∠BAC,得到∠DEF=∠DHF,计算∠DHF大小即可.【详解】(1)∵D,E,F分别是边AB、BC、CA的中点,∴DE,EF是△ABC的中位线,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DEF=∠DHF=∠AHF+∠AHD=70°.本题主要考查中位线的性质和平行四边形的判定与性质,掌握中位线的性质,证明∠DEF=∠DHF是解答本题的关键.17、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】
(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,∴∠OBM=∠OCN=135°,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOM=∠CON,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,∴结论①不成立;结论②成立,理由:如图(1)连接MN,∵△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1,∴结论②成立.本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.18、(1);(2)75件,4250元.【解析】
(1)总利润=甲种童衣每件的利润×甲种童衣的数量+乙种童衣每件的利润×乙种童衣的数量,根据等量关系列出函数解析式即可;(2)根据题意,先得出x的取值范围,再根据函数的增减性进行分析即可.【详解】解:(1)∵甲种童衣的数量为件,,是乙种童衣数量为件;依题意得:甲种童衣每件利润为:元;乙种童衣每件利润为:元∴,∴;(2),,∵中,,∴随的增大而减小,∵,∴时,答:购进甲种童衣为75件时,这批童衣销售完获利最多为4250元.本题考查了一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.考点:概率公式.20、x<-1【解析】
根据函数图像作答即可.【详解】∵-x+1>kx+b∴l1的图像应在l2上方∴根据图像得:x<-1.故答案为:x<-1.本题考查的知识点是函数的图像,解题关键是根据图像作答.21、【解析】
根据中位数的概念求解.【详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22、【解析】
,故答案为考点:分母有理化23、【解析】
整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.故答案为:.本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.【解析】分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
(2)把y=14代入(1)中求得的函数关系式求出x的值即可.详解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得,解得.∴一次函数的表达式为y=1.8x+1.(2)当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教A版安徽省合肥市普通高中联盟2023-2024学年高二上学期1月期末联考数学试题
- 武术说课稿课件
- 基层 工会 课件
- 介绍鲁滨逊课件
- 高考地理一轮复习第六章自然环境的整体性和差异性第一节植被与土壤课件
- 西京学院《微机原理与接口技术》2021-2022学年期末试卷
- 学管师工作核心说课
- 西京学院《教师语言艺术》2022-2023学年第一学期期末试卷
- 西京学院《电机控制技术》2021-2022学年期末试卷
- 学会读书 课件
- DB11-T 1832.15-2022建筑工程施工工艺规程 第15部分:通风与空调安装工程
- F井口电缆防喷装置培训课件
- 新部编版四年级上册语文全册完整课件
- 月报 施工单位完成工程量统计表
- 最新血小板减少症课件
- 天津市单位消防安全管理标准
- 电力电缆基础知识课件
- 情绪智力量表EIS
- 《 民航服务心理学》考试题及参考答案
- 利用相似三角形测高说课稿
- 高二期中考试家长会
评论
0/150
提交评论