版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年安徽马鞍山和县联考九上数学开学联考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列运算正确的是(
)A. B.=1C. D..2、(4分)下图入口处进入,最后到达的是()A.甲 B.乙 C.丙 D.丁3、(4分)对角线相等且互相平分的四边形是()A.一般四边形 B.平行四边形 C.矩形 D.菱形4、(4分)打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为()A.75元,100元 B.120元,160元C.150元,200元 D.180元,240元5、(4分)下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行另一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形6、(4分)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间 B.3和4之间 C.﹣5和﹣4之间 D.4和5之间7、(4分)已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对8、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.10、(4分)函数的自变量x的取值范围______.11、(4分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.12、(4分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.13、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(-)0+(-4)-2-|-|15、(8分)甲乙两车分别从A.B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶。(1)A、B两地的距离___千米;乙车速度是___;a=___.(2)乙出发多长时间后两车相距330千米?16、(8分)实践活动小组要测量旗杆的高度,现有标杆、皮尺.小明同学站在旗杆一侧,通过观视和其他同学的测量,求出了旗杆的高度,请完成下列问题:(1)小明的站点,旗杆的接地点,标杆的接地点,三点应满足什么关系?(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点与点在同直一线上为止;(3)他们都测得了哪些数据就能计算出旗杆的高度?请你用小写字母表示这些数据(不允许测量多余的数据);(4)请用(3)中的数据,直接表示出旗杆的高度.17、(10分)如图,在矩形ABCD中,AB16,BC18,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在点B'处.(I)若AE0时,且点B'恰好落在AD边上,请直接写出DB'的长;(II)若AE3时,且△CDB'是以DB'为腰的等腰三角形,试求DB'的长;(III)若AE8时,且点B'落在矩形内部(不含边长),试直接写出DB'的取值范围.18、(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知,,则的值为___________.20、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A=度.21、(4分)已知一组数据
a,b,c,d的方差是4,那么数据,,,
的方差是________.22、(4分)在实数范围内分解因式:x2﹣3=_____.23、(4分)若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若求EF的长.25、(10分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2(2)能围成总面积为240m2的长方形花圃吗?说明理由26、(12分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.【详解】A.,不是同类二次根式,不能合并,故本选项错误;B.=,故本选项错误;C.,不是同类二次根式,不能合并,故本选项错误;D..故本选项正确.故选:D【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.2、C【解析】
根据平行四边形的性质和对角线的定义对命题进行判断即可.【详解】等腰梯形也满足此条件,可知该命题不是真命题;根据平行四边形的判定方法,可知该命题是真命题;根据题意最后最后结果为丙.故选C.本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.3、C【解析】
由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;【详解】∵四边形的对角线互相平分,∴此四边形是平行四边形;又∵对角线相等,∴此四边形是矩形;故选B.考查矩形的判定,常见的判定方法有:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.4、C【解析】
设打折前商品价格为元,商品为元,根据题意列出关于与的方程组,求出方程组的解即可得到结果.【详解】设打折前商品价格为元,商品为元,根据题意得:,解得:,则打折前商品价格为元,商品为元.故选:.此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键.5、C【解析】
根据平行四边形的判定与性质,菱形的判定,正方形的判定进行判断即可.【详解】解:选项A中,对角线互相垂直且相等的平行四边形是正方形,故A选项错误;选项B中,当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故B选项错误;选项C中,由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,故C选项正确;选项D中,对角线互相垂直的平行四边形是菱形,故D选项错误;故选:C.本题主要考查了平行四边形的判定与性质,菱形的判定,正方形的判定,掌握平行四边形的判定,菱形的判定,正方形的判定是解题的关键.6、A【解析】
由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.【详解】因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.故选A.本题主要考查平面直角坐标系的有关概念和圆的基本概念.7、B【解析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]=[(a-5)2+(b-5)2+(c-5)2]=4,故选B.本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.8、D【解析】
由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.【详解】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.10、x<-2【解析】
二次根式有意义的条件就是被开方数大于等于1;分式有意义的条件是分母不为1.【详解】根据题意得:-x-2>1,解得:x<﹣2.故答案为x<﹣2.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数为非负数.11、(﹣1,0)【解析】
根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12、57.5【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.13、1【解析】由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.故答案为1.三、解答题(本大题共5个小题,共48分)14、1【解析】
先计算0指数幂、负指数幂和绝对值,再根据有理数加减混合运算法则计算即可得到结果.【详解】解:原式==1+-=1.此题考查了实数加减混合运算,熟练掌握运算法则是解本题的关键.15、(1)560千米;100;;(2)乙出发0.5小时或3.5小时后两车相距330千米.【解析】
(1)根据图象,甲出发时的S值即为A、B两地间的距离;先求出甲车的速度,然后设乙车的速度为xkm/h,再利用相遇问题列出方程求解即可;然后求出相遇后甲车到达B地的时间,再根据路程=速度×时间求出两车的相距距离a即可;(2)设直线BC的解析式为S=kt+b(k≠0),利用待定系数法求出直线BC的解析式,再令S=330,求出t的值,减去1即为相遇前乙车出发的时间;设直线CD的解析式为S=kt+b(k≠0),利用待定系数法求出直线CD的解析式,再令S=330,求出t的值,减去1即为相遇后乙车出发的时间.【详解】(1)t=0时,S=560,所以,A.B两地的距离为560千米;甲车的速度为:(560−440)÷1=120km/h,设乙车的速度为xkm/h,则(120+x)×(3−1)=440,解得x=100;相遇后甲车到达B地的时间为:(3−1)×100÷120=小时,所以,a=(120+100)×千米;(2)设直线BC的解析式为S=kt+b(k≠0),将B(1,440),C(3,0)代入得,,解得,所以,S=−220t+660,当−220t+660=330时,解得t=1.5,所以,t−1=1.5−1=0.5;直线CD的解析式为S=kt+b(k≠0),点D的横坐标为,将C(3,0),D()代入得,,解得,所以,S=220t−660(3⩽t⩽)当220t−660=330时,解得t=4.5,所以,t−1=4.5−1=3.5,答:乙出发0.5小时或3.5小时后两车相距330千米.此题考查一次函数的应用,解题关键在于结合函数图象进行解答.16、三点在同一条直线上;和点;答案不唯一:测量的长就能计算出旗杆的高度,设测得;【解析】
过C点作DB的平行线,与EF交于M点,与AB交于N点,测量旗杆高是根据△CME∽△CNA进行计算的,所以(1)小明的站点,旗杆的接地点,标杆的接地点,三点必须在同一直线上;(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点点与A、E点都在同直一线上为止;(3)根据相似三角形成比例测量的长就能计算出旗杆的高度,设测得;(4)根据△CME∽△CAN,写出比例式,表示出AN,然后AB=AN+BN即可得到答案【详解】如图,过C点作DB的平行线,与EF交于M点,与AB交于N点(1)小明的站点,旗杆的接地点,标杆的接地点,三点必须在同一直线上;(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点点与A、E点都在同直一线上为止;(3)根据相似三角形成比例测量的长就能计算出旗杆的高度,设测得;(4)易知△CME∽△CAN,有,CM=DF=c,EM=EF-MF=b-a,CN=DF+FB=c+d,即有,解得AN=,所以AB=本题主要考查相似三角形的实际应用,理解实验过程构造出相似三角形是解题关键17、(I);(II)16或10;(III).【解析】
(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I);(II)∵四边形是矩形,∴,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作∥,分别交与于点、.∵四边形是矩形,∴∥,.又∥,∴四边形是平行四边形,又,∴□是矩形,∴,,即,又,∴,,∵,∴,∴,在中,由勾股定理得:,∴,在中,由勾股定理得:,综上,的长为16或10.(III).(或).本题主要考查了四边形的动点问题.18、(1)y=﹣2x﹣1;(2)2【解析】
(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为1,可求A点坐标,根据待定系数法可求直线l2的解析式;(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去1个小三角形面积即可求解.【详解】解:(1)∵当x=0时,y=0+6=6,∴B(0,6),∵OB=2OC,∴C(0,﹣1),∵点A的纵坐标为1,∴﹣1=x+6,解得x=﹣1,∴A(﹣1,1),则,解得.故直线l2的解析式为y=﹣2x﹣1;(2)∵点D的横坐标为1,∴y=1+6=7,∴D(1,7),∴△ACD的面积=10×4﹣×1×6﹣×4×4﹣×1×10=2.考查了一次函数图象与几何变换,两条直线相交或平行问题,待定系数法,关键是求出C点坐标,A点坐标,D点坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
将写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵,,∴,故答案为:1.本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.20、60【解析】试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.考点:线段垂直平分线的性质21、【解析】
方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变.从而可得答案.【详解】解:设数据a、b、c、d的平均数为,数据都加上了2,则平均数为,∵故答案为1.本题考查了方差,说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.掌握以上知识是解题的关键.22、【解析】
把3写成的平方,然后再利用平方差公式进行分解因式.【详解】解:x2﹣3=x2﹣()2=(x+)(x﹣).本题考查平方差公式分解因式,把3写成的平方是利用平方差公式的关键.23、4【解析】
因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4解答本题的关键是确定x的值,即灵活应用中位数概念.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)【解析】
(1)证明,得出,即可得出结论;(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,,∵BD平分,,,,是菱形;(2)解:∵四边形ABCD是菱形,,,∴四边形ABDE是平行四边形,,,,,是等腰直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 屋里尖尖角课件
- 西京学院《影视鉴赏》2023-2024学年第一学期期末试卷
- 西京学院《数据采集与预处理》2022-2023学年期末试卷
- 孝亲敬老,从我做起
- 西京学院《机器学习》2023-2024学年期末试卷
- 2024-2025学年高二物理举一反三系列1.4质谱仪和回旋加速器((含答案))
- 爆米花课件背景
- Module 4单元备课(说课稿)-2024-2025学年外研版(一起)英语三年级上册
- 西昌学院《土地评价学》2022-2023学年第一学期期末试卷
- 天然气净化高级单选题复习试题有答案
- 临时入场人员安全告知书
- 抖音直播知识培训考试题库(含答案)
- 220kV级变压器安装使用说明指导书
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- 新生儿咽下综合征护理查房
- 2024年深圳市机场集团有限公司招聘笔试参考题库附带答案详解
- EPC项目采购阶段质量保证措施
- 设备安装调试服务协议书
- 2023年1月自考00324人事管理学试题及答案含解析
- 2021年度企业所得税汇算清缴之《贷款损失准备金及纳税调整明细表》填报详解
- 家庭室内装修预算方法1
评论
0/150
提交评论