2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题(原卷版+解析)_第1页
2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题(原卷版+解析)_第2页
2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题(原卷版+解析)_第3页
2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题(原卷版+解析)_第4页
2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题(原卷版+解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题典例分析例.(2022金华中考)如图,在菱形中,,点E从点B出发沿折线向终点D运动.过点E作点E所在的边(或)的垂线,交菱形其它的边于点F,在的右侧作矩形.(1)如图1,点G在上.求证:.(2)若,当过中点时,求的长.(3)已知,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与相似(包括全等)?专题过关1.(2022长春中考)如图,在中,,,点M为边的中点,动点P从点A出发,沿折线以每秒个单位长度的速度向终点B运动,连结.作点A关于直线的对称点,连结、.设点P的运动时间为t秒.(1)点D到边的距离为__________;(2)用含t的代数式表示线段的长;(3)连结,当线段最短时,求的面积;(4)当M、、C三点共线时,直接写出t的值.2.(2022衡阳中考)如图,在菱形中,,,点从点出发,沿线段以每秒1个单位长度的速度向终点运动,过点作于点,作交直线于点,交直线于点,设与菱形重叠部分图形的面积为(平方单位),点运动时间为(秒).(1)当点与点重合时,求的值;(2)当为何值时,与全等;(3)求与的函数关系式;(4)以线段为边,在右侧作等边三角形,当时,求点运动路径的长.3.(2022绵阳中考)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.4.(2022吉林中考)如图,在中,,,.动点从点出发,以的速度沿边向终点匀速运动.以为一边作,另一边与折线相交于点,以为边作菱形,点在线段上.设点的运动时间为,菱形与重叠部分图形的面积为.(1)当点在边上时,的长为;(用含的代数式表示)(2)当点落在边上时,求的值;(3)求关于的函数解析式,并写出自变量的取值范围.5.(2022青岛中考)如图,在中,,将绕点A按逆时针方向旋转得到,连接.点P从点B出发,沿方向匀速运动,速度为;同时,点Q从点A出发,沿方向匀速运动,速度为.交于点F,连接.设运动时间为.解答下列问题:(1)当时,求t的值;(2)设四边形的面积为,求S与t之间的函数关系式;(3)是否存在某一时刻t,使?若存在,求出t的值;若不存在,请说明理由.2023学年二轮复习解答题专题四十六:与运动问题有关的类比探究综合题典例分析例.(2022金华中考)如图,在菱形中,,点E从点B出发沿折线向终点D运动.过点E作点E所在的边(或)的垂线,交菱形其它的边于点F,在的右侧作矩形.(1)如图1,点G在上.求证:.(2)若,当过中点时,求的长.(3)已知,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与相似(包括全等)?【答案】(1)见解析(2)或5(3)或或或【解析】【分析】(1)证明△AFG是等腰三角形即可得到答案;(2)记中点为点O.分点E在上和点E在上两种情况进行求解即可;(3)过点A作于点M,作于点N.分点E在线段上时,点E在线段上时,点E在线段上,点E在线段上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形是菱形,∴,∴.∵FGBC,∴,∴,∴△AFG是等腰三角形,∴.【小问2详解】解:记中点为点O.①当点E在上时,如图2,过点A作于点M,∵中,,∴.∴,∵,∴,∴,∴.②当点E在上时,如图3,过点A作于点N.同理,,,∴.∴或5.【小问3详解】解:过点A作于点M,作于点N.①当点E在线段上时,.设,则,ⅰ)若点H在点C的左侧,,即,如图4,.∵,∴,∴,∴,解得,经检验,是方程的根,∴.∵,∴,∴,∴,解得,经检验,是方程的根,∴.ⅱ)若点H在点C的右侧,,即,如图5,.∵,∴,∴,∴,此方程无解.∵,∴,∴,∴,解得,经检验,是方程的根,∴.②当点E在线段上时,,如图6,.∴.∵,∴,∴,∴,此方程无解.∵,∴,∴,∴,解得,经检验,是方程的根,∵,∴不合题意,舍去;③当点E在线段上时,,如图7,过点C作于点J,在中,.,∴,∴,∵,∴,符合题意,此时,.④当点E在线段上时,,∵,∴与不相似.综上所述,s满足的条件为:或或或.【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键.专题过关1.(2022长春中考)如图,在中,,,点M为边的中点,动点P从点A出发,沿折线以每秒个单位长度的速度向终点B运动,连结.作点A关于直线的对称点,连结、.设点P的运动时间为t秒.(1)点D到边的距离为__________;(2)用含t的代数式表示线段的长;(3)连结,当线段最短时,求的面积;(4)当M、、C三点共线时,直接写出t的值.【答案】(1)3(2)当0≤t≤1时,;当1<t≤2时,;(3)(4)或【解析】【分析】(1)连接DM,根据等腰三角形的性质可得DM⊥AB,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t≤1时,点P在AD边上;当1<t≤2时,点P在BD边上,即可求解;(3)过点P作PE⊥DM于点E,根据题意可得点A运动轨迹为以点M为圆心,AM长为半径的圆,可得到当点D、A′、M三点共线时,线段最短,此时点P在AD上,再证明△PDE∽△ADM,可得,从而得到,在中,由勾股定理可得,即可求解;(4)分两种情况讨论:当点位于M、C之间时,此时点P在AD上;当点()位于CM的延长线上时,此时点P在BD上,即可求解.【小问1详解】解:如图,连接DM,∵AB=4,,点M为边的中点,∴AM=BM=2,DM⊥AB,∴,即点D到边的距离为3;故答案为:3【小问2详解】解:根据题意得:当0≤t≤1时,点P在AD边上,;当1<t≤2时,点P在BD边上,;综上所述,当0≤t≤1时,;当1<t≤2时,;【小问3详解】解:如图,过点P作PE⊥DM于点E,∵作点A关于直线的对称点,∴A′M=AM=2,∴点A的运动轨迹为以点M为圆心,AM长为半径的圆,∴当点D、A′、M三点共线时,线段最短,此时点P在AD上,∴,根据题意得:,,由(1)得:DM⊥AB,∵PE⊥DM,∴PE∥AB,∴△PDE∽△ADM,∴,∴,解得:,∴,在中,,∴,解得:,∴,∴;【小问4详解】解:如图,当点M、、C三点共线时,且点位于M、C之间时,此时点P在AD上,连接AA′,A′B,过点P作PF⊥AB于点F,过点A′作A′G⊥AB于点G,则AA′⊥PM,∵AB为直径,∴∠A=90°,即AA′⊥A′B,∴PM∥A′B,∴∠PMF=∠ABA′,过点C作CN⊥AB交AB延长线于点N,在中,AB∥DC,∵DM⊥AB,∴DM∥CN,∴四边形CDMN为平行四边形,∴CN=DM=3,MN=CD=4,∴CM=5,∴,∵M=2,∴,∴,∴,∴,∴,∴,即PF=3FM,∵,,∴,∴,即AF=2FM,∵AM=2,∴,∴,解得:;如图,当点()位于CM的延长线上时,此时点P在BD上,,过点作于点G′,则,取的中点H,则点M、P、H三点共线,过点H作HK⊥AB于点K,过点P作PT⊥AB于点T,同理:,∵HK⊥AB,,∴HK∥A′′G′,∴,∵点H是的中点,∴,∴,∴,∴,∴,即MT=3PT,∵,,∴,∴,∵MT+BT=BM=2,∴,∴,解得:;综上所述,t的值为或.【点睛】本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点的运动轨迹是解题的关键,是中考的压轴题.2.(2022衡阳中考)如图,在菱形中,,,点从点出发,沿线段以每秒1个单位长度的速度向终点运动,过点作于点,作交直线于点,交直线于点,设与菱形重叠部分图形的面积为(平方单位),点运动时间为(秒).(1)当点与点重合时,求的值;(2)当为何值时,与全等;(3)求与的函数关系式;(4)以线段为边,在右侧作等边三角形,当时,求点运动路径的长.【答案】(1)(2)或(3)(4)【解析】【分析】(1)画出图形,根据30°直角三角形求解即可;(2)根据全等的性质计算即可,需要注意分类讨论;(3)利用面积公式计算即可,需要根据M在B点左边和右边分类讨论;(4)先确定E点的运动轨迹是一条直线,再根据求点运动路径的长.【小问1详解】与重合时,∵,∴,∴.【小问2详解】①当时,∵,∴,∵,∴,∴,∴.②当,∵,∴,∵,∴,∴,∴.∴或.【小问3详解】①当时,,∴,∴.②当时,∵,,∴,∴,∴.【小问4详解】连接.∵为正三角形,∴,在Rt△APE中,,∴为定值.∴的运动轨迹为直线,,当时,当时,∴的运动路径长为.【点睛】本题属于四边形的综合问题,考查了菱形的性质,30°直角三角形的性质,全等三角形的性质,锐角三角函数等知识,综合程度较高,考查学生灵活运用知识的能力.3.(2022绵阳中考)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.【答案】(1);(2)y关于x的函数解析式为;当时,y的最大值为;(3)当EF∥BD时,能使EM=HM.理由见解析【解析】【分析】(1)延长DF交CB的延长线于点G,先证得,可得,根据题意可得AF=,AE=,可得到CG=3,再证明△PDE∽△PGC,即可求解;(2)分三种情况讨论:当0≤x≤2时,E点在AD上,F点在AB上;当时,E点在BD上,F点在AB上;当时,点E、F均在BD上,即可求解;(3)当EF∥BD时,能使EM=HM.理由:连接DH,根据直角三角形的性质,即可求解.【小问1详解】解:如图,延长DF交CB的延长线于点G,∵四边形ABCD是平行四边形,∴,∴,∴,∵点E的速度为1个单位每秒,点F的速度为4个单位每秒,运动时间为秒,∴AF=,AE=,∵AB=4,AD=2,∴BF=,ED=,∴,∴BG=1,∴CG=3,∵,∴△PDE∽△PGC,∴,∴;【小问2详解】解:根据题意得:当0≤x≤2时,E点在AD上,F点在AB上,此时AE=x,,∵,AB=4,AD=2,∴,∴△ABD是直角三角形,∵,∴∠ABD=30°,∴∠A=60°,如图,过点E作交于H,∴,∴;∴当x>0时,y随x的增大而增大,此时当x=2时,y有最大值3;当时,E点在BD上,F点在AB上,如图,过点E作交于N,过点D作交于M,则EN∥DM,根据题意得:DE=x-2,∴,在Rt△ABD中,,AM=1,∵EN∥DM,∴△BEN∽△BDM,∴,∴∴,∴,此时该函数图象的对称轴为直线,∴当时,y随x的增大而减小,此时当x=2时,y有最大值3;当时,点E、F均在BD上,过点E作交于Q,过点F作交于P,过点D作DM⊥AB于点M,∴,DA+DE=x,∵AB=4,AD=2,∴,,∵PF∥DM,∴△BFP∽△BDM,∴,即,∴,∵,∴△BEQ∽△BDM,∴,即,∴,∴,此时y随x的增大而减小,此时当时,y有最大值;综上所述:y关于x的函数解析式为当时,y最大值为;【小问3详解】解:当EF∥BD时,能使EM=HM.理由如下:连接DH,如图,∵,AB=4,∴.AH=1,由(2)得:此时,∵M是DF的中点,∴HM=DM=MF,∵EF∥BD,BD⊥AD,∴EF⊥AD,∴EM=DM=FM,∴EM=HM.【点睛】本题是四边形的综合题,熟练掌握平行四边形的性质,平行线的性质,直角三角形的性质,分类讨论,数形结合是解题的关键.4.(2022吉林中考)如图,在中,,,.动点从点出发,以的速度沿边向终点匀速运动.以为一边作,另一边与折线相交于点,以为边作菱形,点在线段上.设点的运动时间为,菱形与重叠部分图形的面积为.(1)当点在边上时,的长为;(用含的代数式表示)(2)当点落在边上时,求的值;(3)求关于的函数解析式,并写出自变量的取值范围.【答案】(1)2x(2)1(3)【解析】【分析】(1)先证明∠A=∠AQP=30°,即AP=PQ,根据题意有AP=2x,即PQ=2x;(2)当M点在BC上,Q点在AC上,在(1)中已求得AP=PQ=2x,再证明△MNB是等边三角形,即有BN=MN,根据AB=6x=6cm,即有x=1(s);(3)分类讨论:当时,此时菱形PQMN在△ABC的内部,此时菱形PQMN与△ABC重叠的面积即是菱形PQMN的面积,过Q点作QG⊥AB于G点,求出菱形的面积即可;当x>1,且Q点在线段AC上时,过Q点作QG⊥AB于G点,设QM交BC于F点,MN交BC于E点,过M点作NH⊥EF于H点,先证明△ENB是等边三角形、△MEF是等边三角形,重叠部分是菱形PQMN的面积减去等边△MEF的面积,求出菱形PQMN的面积和等边△MEF的面积即可,此时需要求出当Q点在C点时的临界条件;当时,此时Q点在线段BC上,此时N点始终与B点重合,过Q点作QG⊥AB于G点,重叠部分的面积就是△PBQ的面积,求出等边△PBQ的面积即可.小问1详解】当Q点AC上时,∵∠A=30°,∠APQ=120°,∴∠AQP=30°,∴∠A=∠AQP,∴AP=PQ,∵运动速度为每秒2cm,运动时间为x秒,∴AP=2x,∴PQ=2x;【小问2详解】当M点在BC上,Q点在AC上,如图,在(1)中已求得AP=PQ=2x,∵四边形QPMN是菱形,∴PQ=PN=MN=2x,,∵∠APQ=120°,∴∠QPB=60°,∵,∴∠MNB=∠QPB=60°,∵在Rt△ABC中,∠C=90°,∠A=30°,∴∠B=60°,∴△MNB是等边三角形,∴BN=MN,∴AB=AP+PN+BN=2x×3=6x=6cm,∴x=1(s);【小问3详解】当P点运动到B点时,用时6÷2=3(s),即x的取值范围为:,当M点刚好在BC上时,在(2)中已求得此时x=1,分情况讨论,即当时,此时菱形PQMN在△ABC的内部,∴此时菱形PQMN与△ABC重叠的面积即是菱形PQMN的面积,过Q点作QG⊥AB于G点,如图,∵∠APQ=120°,∴∠QPN=60°,即菱形PQMN的内角∠QPN=∠QMN=60°,∴QG=PQ×sin∠QPN=2x×sin60°=,∴重叠的面积等于菱形PQMN的面积为,即为:;当x>1,且Q点在线段AC上时,过Q点作QG⊥AB于G点,设QM交BC于F点,MN交BC于E点,过M点作NH⊥EF于H点,如图,∵,∴∠MNB=∠QPN=60,∵∠B=60°,∴△ENB是等边三角形,同理可证明△MEF是等边三角形∴BN=NE,∠MEF=60°,ME=EF,∵AP=PQ=PN=MN=2x,AB=6,∴BN=6-AN=6-4x,∴ME=MN-NE=2x-BN=6x-6,∵MH⊥EF,∴MH=ME×sin∠MEH=(6x-6)×sin60°=,∴△MEF的面积为:,QG=PQ×sin∠QPN=2x×sin60°=,∵菱形PQMN的面积为,∴重叠部分面积为,当Q点与C点重合时,可知此时N点与B点重合,如图,∵∠CPB=∠CBA=60°,∴△PBC是等边三角形,∴PC=PB,∵AP=PQ=2x,∴AP=PB=2x,∴AB=AP+PB=4x=6,则x=,即此时重合部分的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论