第1章《一元二次方程》知识讲练(学生版+解析)_第1页
第1章《一元二次方程》知识讲练(学生版+解析)_第2页
第1章《一元二次方程》知识讲练(学生版+解析)_第3页
第1章《一元二次方程》知识讲练(学生版+解析)_第4页
第1章《一元二次方程》知识讲练(学生版+解析)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年苏科版数学九年级上册章节知识讲练知识点1:一元二次方程的有关概念1.一元二次方程的概念:

通过化简后,只,并且未知数的的,叫做一元二次方程.

2.一元二次方程的一般式:

3.一元二次方程的解:

使叫做一元二次方程的解,也叫做

细节剖析:判断一个方程是否为一元二次方程时,首先观察其是否是,否则一定一元二次方程;其次再将整式方程整理化简使方程的,看是否具备另两个条件:①一个;②未知数的最高次数为对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.知识点2:一元二次方程的解法1.基本思想一元二次方程2.基本解法细节剖析:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用知识点3:一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有的实数根;(2)当△=0时,一元二次方程有的实数根;(3)当△<0时,一元二次方程实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,.注意它的使用条件为a≠0,Δ≥0.细节剖析:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:

(1)不解方程判定方程根的情况;

(2)根据参系数的性质确定根的范围;

(3)解与根有关的证明题.

2.一元二次方程根与系数的应用很多:

(1)已知方程的一根,不解方程求另一根及参数系数;

(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;

(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.知识点4:列一元二次方程解应用题1.列方程解实际问题的三个重要环节:

一是审题;

二是把握问题中的

三是的合理性.

2.利用方程解决实际问题的关键是寻找等量关系.

3.解决应用题的一般步骤:

审(审题目,分清等);

设(设,有时会用);

列(根据题目中的,);

解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义);

答(写出答案,切忌答非所问).

4.常见应用题型

数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.细节剖析:列方程解应用题就是先把实际问题抽象为,然后由数学问题的解决而获得对的解决.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•江都区期末)如图,在长为28米、宽为10米的矩形空地上修建如图所示的道路(图中的阴影部分)余下部分铺设草坪,要使得草坪的面积为243平方米,则可列方程为()A.28×10﹣28x﹣10x=243 B.(28﹣x)(10﹣x)+x2=243 C.(28﹣x)(10﹣x)=243 D.2(28﹣x+10﹣x)=2432.(2分)(2023•锡山区校级四模)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A. B. C. D.3.(2分)(2023•雨花台区校级模拟)方程(x+1)(x﹣2)+1=0的根的情况,下列结论中正确的是()A.两个正根 B.两个负根 C.一个正根,一个负根 D.无实数根4.(2分)(2023•无锡)2020年﹣2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是()A.5.76(1+x)2=6.58 B.5.76(1+x2)=6.58 C.5.76(1+2x)=6.58 D.5.76x2=6.585.(2分)(2023•海门市二模)《九章算术》是我国古代数学名著,记载着“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根笔直生长的竹子,高一丈(一丈=10尺),因虫害有病,一阵风吹来将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,求折断处离地面的高度是多少尺?设折断处离地面的高度为x尺,则可列方程为()A.x2+32=(10﹣x)2 B.x2+32=102 C.x2+(10﹣x)2=32 D.(10﹣x)2+32=x26.(2分)(2023•海门市二模)若实数a,b,c满足a﹣b2﹣2=0,2a2﹣4b2﹣c=0,则c的最小值是()A.6 B.7 C.8 D.97.(2分)(2023•秦淮区二模)下列一元二次方程(a为常数,且a>0),有两个异号的实数根的是()A.(x﹣1)2+a=0 B.(x﹣1)(x﹣a)=0 C.a(x+1)2=0 D.x2﹣x﹣a=08.(2分)(2023•武进区校级模拟)若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2 B.2 C.0 D.﹣2或29.(2分)(2022秋•江阴市期末)已知关于x的一元二次方程x2+10x+2a+6=0,其中一根是另一根的4倍,则a的值为()A.或5 B.或﹣5 C. D.510.(2分)(2023春•扬州月考)已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•高邮市模拟)设x1、x2是方程x2+mx﹣2=0的两个根,且x1+x2=2x1x2,则m=.12.(2分)(2023•淮安模拟)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为.13.(2分)(2023•邗江区二模)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云阔不及长一十二步,问长及阔各几步”.意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.14.(2分)(2023•海陵区校级二模)对于实数a,b,定义运算“*”:,例如4*2,因为4>2,所以4*2=42﹣4×2=8.若a,b是一元二次方程x2﹣2x﹣3=0的两个根,则a*b=.15.(2分)(2022秋•靖江市期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1+x2+x1x2=1,则m的值为.16.(2分)(2023•建邺区二模)设x1,x2是关于x的方程x2+6x+m=0的两个根,且x1=2x2,则m=.17.(2分)(2022秋•宿城区期末)如果一元二次方程的两根相差1,那么该方程成为“差1方程”.例如x2+x=0是“差1方程”.若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差1方程”设t=10a﹣b2,t的最大值为.18.(2分)(2023•靖江市模拟)已知x、y为实数,且满足x2﹣xy+y2=2,记W=x2+xy+y2的最大值为M,最小值为m,则M+m=.19.(2分)(2020秋•常州期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.20.(2分)(2019秋•滨湖区期末)已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.三.解答题(共8小题,满分60分)21.(6分)(2023春•仪征市期末)解方程:(1);(2)x2+3x﹣2=0.(用配方法)22.(6分)(2023•姜堰区二模)如图,用总长48m的篱笆依墙(墙足够长)围成如图所示的①②③三块矩形区域,且三块区域面积相等.(1)的值为;的值为;(2)当矩形ABCD的面积为108m2时,求BC的长.23.(8分)(2023•姜堰区一模)某草莓采摘园收费信息如下表:成人票儿童票带出草莓价格不超过10人超过10人20元/人30元/斤30元/人每增加1人,人均票价下降1元,但不低于儿童票价.(1)某社团共32人去该采摘园进行综合实践活动,购买了10张儿童票,其余均为成人票,总费用不超过1240元,求本次活动他们最多共带出草莓多少斤?(2)某公司员工(均为成人)在该草莓采摘园组织团建活动,共支付票价391元,求这次参加团建的共多少人?24.(8分)(2023春•仪征市期末)端午节前夕,某超市从厂家分两次购进蛋黄粽子、红豆粽子,两次进货时,两种粽子的进价不变.第一次购进蛋黄粽子60袋和红豆粽子90袋,总费用为4800元;第二次购进蛋黄粽子40袋和红豆粽子80袋,总费用为3600元.(1)求蛋黄粽子、红豆粽子每袋的进价各是多少元?(2)当蛋黄粽子销售价为每袋70元时,每天可售出20袋,为了促销,该超市决定对蛋黄粽子进行降价销售,经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当蛋黄粽子每袋的销售价为多少元时,每天售出蛋黄粽子所获得的利润为220元?25.(8分)(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.26.(8分)(2023•海陵区一模)2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元.(1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a元,月销量比(1)中最低销量270盒增加了60a盒,于是月销售利润达到了1650元,求a的值.27.(8分)(2023•滨海县模拟)某服装销售商用48000元购进了一批时尚新款服装,通过网络平台进行销售,由于行情较好,第二次又用100000元购进了同种服装,第二次购进数量是第一次购进数量的2倍,每件的进价多了10元.(1)该销售商第一次购进了这种服装多少件,每件进价多少元?(2)该销售商卖出第一批服装后,统计发现:若按每件300元销售,每天平均能卖出80件,销售价每降低10元,则多卖出20件.依此行情,卖第二批服装时,让利促销,并使一天的利润恰好为3600元,销售价应为多少?28.(8分)(2022秋•灌南县校级月考)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?

2023-2024学年苏科版数学九年级上册章节知识讲练知识点1:一元二次方程的有关概念1.一元二次方程的概念:

通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.

2.一元二次方程的一般式:

3.一元二次方程的解:

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.

细节剖析:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.知识点2:一元二次方程的解法1.基本思想一元二次方程一元一次方程2.基本解法直接开平方法、配方法、公式法、因式分解法.细节剖析:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解

法,再考虑用公式法.知识点3:一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,.注意它的使用条件为a≠0,Δ≥0.细节剖析:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:

(1)不解方程判定方程根的情况;

(2)根据参系数的性质确定根的范围;

(3)解与根有关的证明题.

2.一元二次方程根与系数的应用很多:

(1)已知方程的一根,不解方程求另一根及参数系数;

(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;

(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.知识点4:列一元二次方程解应用题1.列方程解实际问题的三个重要环节:

一是整体地、系统地审题;

二是把握问题中的等量关系;

三是正确求解方程并检验解的合理性.

2.利用方程解决实际问题的关键是寻找等量关系.

3.解决应用题的一般步骤:

审(审题目,分清已知量、未知量、等量关系等);

设(设未知数,有时会用未知数表示相关的量);

列(根据题目中的等量关系,列出方程);

解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义);

答(写出答案,切忌答非所问).

4.常见应用题型

数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.细节剖析:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•江都区期末)如图,在长为28米、宽为10米的矩形空地上修建如图所示的道路(图中的阴影部分)余下部分铺设草坪,要使得草坪的面积为243平方米,则可列方程为()A.28×10﹣28x﹣10x=243 B.(28﹣x)(10﹣x)+x2=243 C.(28﹣x)(10﹣x)=243 D.2(28﹣x+10﹣x)=243解:∵道路的宽为x米,∴铺设草坪的面积等于长为(28﹣x)米、宽(10﹣x)米的矩形面积.∵草坪的面积为243平方米,∴(28﹣x)(10﹣x)=243.故选:C.2.(2分)(2023•锡山区校级四模)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A. B. C. D.解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得,故选:C.3.(2分)(2023•雨花台区校级模拟)方程(x+1)(x﹣2)+1=0的根的情况,下列结论中正确的是()A.两个正根 B.两个负根 C.一个正根,一个负根 D.无实数根解:方程整理得:x2﹣x﹣1=0,∵Δ=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,∴方程有两个不相等的实数根,设为a,b,∵a+b=1,ab=﹣1,∴方程一个正根,一个负根,且正根绝对值大于负根绝对值.故选:C.4.(2分)(2023•无锡)2020年﹣2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是()A.5.76(1+x)2=6.58 B.5.76(1+x2)=6.58 C.5.76(1+2x)=6.58 D.5.76x2=6.58解:由题意得:5.76(1+x)2=6.58.故选:A.5.(2分)(2023•海门市二模)《九章算术》是我国古代数学名著,记载着“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根笔直生长的竹子,高一丈(一丈=10尺),因虫害有病,一阵风吹来将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,求折断处离地面的高度是多少尺?设折断处离地面的高度为x尺,则可列方程为()A.x2+32=(10﹣x)2 B.x2+32=102 C.x2+(10﹣x)2=32 D.(10﹣x)2+32=x2解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:A.6.(2分)(2023•海门市二模)若实数a,b,c满足a﹣b2﹣2=0,2a2﹣4b2﹣c=0,则c的最小值是()A.6 B.7 C.8 D.9解:∵a﹣b2﹣2=0,∴b2=a﹣2≥0,∴a≥2,∵2a2﹣4b2﹣c=0,∴2a2﹣4(a﹣2)﹣c=0,∴c=2a2﹣4a+8=2(a﹣1)2+6,当a=2时,c的最小值是2×(2﹣1)2+6=2+6=8.故选:C.7.(2分)(2023•秦淮区二模)下列一元二次方程(a为常数,且a>0),有两个异号的实数根的是()A.(x﹣1)2+a=0 B.(x﹣1)(x﹣a)=0 C.a(x+1)2=0 D.x2﹣x﹣a=0解:A、∵(x﹣1)2+a=0,∴x2﹣2x+1+a=0∵Δ=(﹣2)2﹣4×1×(1+a)=﹣4a<0,∴该方程没有实数根,B、解方程(x﹣1)(x﹣a)=0,得x1=1,x2=a>0,∴该方程有两个同号的实数根;C、由a(x+1)2=0,解得x1=x2=﹣1,∴该方程有两个同号的实数根;D、∵x2﹣x﹣a=0,∴Δ=(﹣1)2﹣4×1×(﹣a)=1+4a>0,∴该方程有两个不相等的实数根,∵方程x2﹣x﹣a=0的两个根的积温﹣a<0,∴该方程有两个异号的实数根;故选:D.8.(2分)(2023•武进区校级模拟)若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2 B.2 C.0 D.﹣2或2解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.9.(2分)(2022秋•江阴市期末)已知关于x的一元二次方程x2+10x+2a+6=0,其中一根是另一根的4倍,则a的值为()A.或5 B.或﹣5 C. D.5解:设x1、x2关于x的一元二次方程x2+10x+2a+6=0,x1=m,x2=4m,∴,解得:a=5.∴a的值为5.故选:D.10.(2分)(2023春•扬州月考)已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•高邮市模拟)设x1、x2是方程x2+mx﹣2=0的两个根,且x1+x2=2x1x2,则m=4.解:∵x1、x2是方程x2+mx﹣2=0的两个根,∴x1+x2=﹣m,x1x2=﹣2.∵x1+x2=2x1x2,∴﹣m=2×(﹣2),解得m=4.故答案为:4.12.(2分)(2023•淮安模拟)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为﹣3.解:根据题意得Δ=[﹣(2m﹣1)]2﹣4m2≥0,解得m≤,∵方程的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2,∵(x1+1)(x2+1)=3,∴x1x2+(x1+x2)+1=3,即m2+2m﹣1+1=3,整理得m2+2m﹣3=0,解得m1=﹣3,m2=1,∵m≤,∴m=﹣3.故答案为:﹣3.13.(2分)(2023•邗江区二模)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云阔不及长一十二步,问长及阔各几步”.意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为x(x+12)=864.解:∵矩形的宽为x(步),且宽比长少12(步),∴矩形的长为(x+12)(步).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.14.(2分)(2023•海陵区校级二模)对于实数a,b,定义运算“*”:,例如4*2,因为4>2,所以4*2=42﹣4×2=8.若a,b是一元二次方程x2﹣2x﹣3=0的两个根,则a*b=12或﹣4:.解:x2﹣2x﹣3=0,解得:x=3或x=﹣1,当a=3,b=﹣1时,则a*b=a2﹣a•b=32﹣3×(﹣1)=12,当a=﹣1,b=3时,则a*b=a•b﹣a2=﹣1×3﹣(﹣1)2=﹣4,故答案为:12或﹣4.15.(2分)(2022秋•靖江市期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1+x2+x1x2=1,则m的值为0.解:∵一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴,且Δ=(2m﹣1)2﹣4m2≥0,∴,∵x1+x2+x1x2=1,∴﹣(2m﹣1)+m2=1,解得:m=0或2(舍去),∴m的值为0.故答案为:0.16.(2分)(2023•建邺区二模)设x1,x2是关于x的方程x2+6x+m=0的两个根,且x1=2x2,则m=8.解:根据题意,知x1+x2=3x2=﹣6,则x2=﹣2,将其代入关于x的方程x2+6x+m=0,得(﹣2)2+6×(﹣2)+m=0.解得m=8.故答案为:8.17.(2分)(2022秋•宿城区期末)如果一元二次方程的两根相差1,那么该方程成为“差1方程”.例如x2+x=0是“差1方程”.若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差1方程”设t=10a﹣b2,t的最大值为9.解:由题可得:Δ=b2﹣4a×1=b2﹣4a≥0,∴解方程得,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“差1方程”,∴,∴b2=a2+4a,∵t=10a﹣b2,∴t=6a﹣a2=﹣(a﹣3)2+9,∵(a﹣3)2≥0,∴a=3时,t的最大值为9.故答案为:9.18.(2分)(2023•靖江市模拟)已知x、y为实数,且满足x2﹣xy+y2=2,记W=x2+xy+y2的最大值为M,最小值为m,则M+m=6.解:∵x2﹣xy+y2=2,∴x2+y2=xy+2,xy=x2+y2﹣2,∴W=x2+xy+y2=2xy+2,∵3xy=2xy+(x2+y2﹣2)=(x+y)2﹣2≥﹣2,当且仅当x=﹣y,即x=,y=﹣或x=﹣,y=时等号成立.∴xy的最小值为﹣,W=x2+xy+y2=2xy+2的最小值为,即m=.∵xy=2xy﹣(x2+y2﹣2)=2﹣(x﹣y)2≤2,当且仅当x=y,即x=,y=或x=﹣,y=﹣时等号成立.∴xy的最大值为2,W=x2+xy+y2=2xy+2的最大值为6,即M=6,∴M+m=+6=6.故答案为:6.19.(2分)(2020秋•常州期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有②③④(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=﹣,x2=﹣q,∴x2=﹣q=﹣=2x1,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:x1=,x2=,若x1=2x2,则,=×2,即,﹣×2=0,∴=0,∴=0,∴3=﹣b∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,×2=,即,则,×2﹣=0,∴=0,∴﹣b+3=0,∴b=3,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,故答案为:②③④20.(2分)(2019秋•滨湖区期末)已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.三.解答题(共8小题,满分60分)21.(6分)(2023春•仪征市期末)解方程:(1);(2)x2+3x﹣2=0.(用配方法)解:(1),(x+1)2﹣4=x2﹣1,解得x=1,经检验,x=1时,x﹣1=1﹣1=0,故是增根,故原方程无解;(2)x2+3x﹣2=0,x2+3x=2,x2+3x+=2+,即(x+)2=,∴x+=±,∴x1=﹣﹣,x2=﹣+.22.(6分)(2023•姜堰区二模)如图,用总长48m的篱笆依墙(墙足够长)围成如图所示的①②③三块矩形区域,且三块区域面积相等.(1)的值为2;的值为2;(2)当矩形ABCD的面积为108m2时,求BC的长.解:(1)∵矩形①和矩形②的面积相等,∴AH=DH,又∵BC=AH+DH=2AH,∴==2;∵矩形①和矩形③的面积相等,且BC=2AH,∴AE=2EB,∴==2.故答案为:2,2;(2)设EB=xm,则AE=2xm,BC==(24﹣4x)m,根据题意得:(2x+x)(24﹣4x)=108,整理得:x2﹣6x+9=0,解得:x1=x2=3,∴24﹣4x=24﹣4×3=12.答:BC的长为12m.23.(8分)(2023•姜堰区一模)某草莓采摘园收费信息如下表:成人票儿童票带出草莓价格不超过10人超过10人20元/人30元/斤30元/人每增加1人,人均票价下降1元,但不低于儿童票价.(1)某社团共32人去该采摘园进行综合实践活动,购买了10张儿童票,其余均为成人票,总费用不超过1240元,求本次活动他们最多共带出草莓多少斤?(2)某公司员工(均为成人)在该草莓采摘园组织团建活动,共支付票价391元,求这次参加团建的共多少人?解:(1)设本次活动他们共带出草莓x斤,由题意知成人有22人,∵30﹣12=18<20,∴成人与儿童票价相同,∴20×10+22×20+30x≤1240,∴x≤20,∴x的最大整数为20.答:本次活动他们共带出草莓20斤;(2)设这次参加团建的共y人,由题意得,y[30﹣(y﹣10)]=391.∴y1=17,y2=23,当y=23时,40﹣y=17<20,不合题意,舍去.答:这次参加团建的共17人.24.(8分)(2023春•仪征市期末)端午节前夕,某超市从厂家分两次购进蛋黄粽子、红豆粽子,两次进货时,两种粽子的进价不变.第一次购进蛋黄粽子60袋和红豆粽子90袋,总费用为4800元;第二次购进蛋黄粽子40袋和红豆粽子80袋,总费用为3600元.(1)求蛋黄粽子、红豆粽子每袋的进价各是多少元?(2)当蛋黄粽子销售价为每袋70元时,每天可售出20袋,为了促销,该超市决定对蛋黄粽子进行降价销售,经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当蛋黄粽子每袋的销售价为多少元时,每天售出蛋黄粽子所获得的利润为220元?解:(1)设蛋黄粽子的进价是x元/袋,红豆粽子的进价是y元/袋,根据题意得:,解得:.答:蛋黄粽子的进价是50元/袋,红豆粽子的进价是20元/袋;(2)设蛋黄粽子的销售价格为m元/袋,则每袋的销售利润为(m﹣50)元,每天可售出20+5(70﹣m)=(370﹣5m)袋,根据题意得:(m﹣50)(370﹣5m)=220,解得:m2﹣124m+3744=0,解得:m1=52,m2=72(不符合题意,舍去).答:当蛋黄粽子每袋的销售价为52元时,每天售出蛋黄粽子所获得的利润为220元.25.(8分)(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.(1)证明:∵Δ=[﹣(k+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论