版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年苏州市吴江区数学九上开学调研模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.2、(4分)某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为,根据题意可列方程为()A. B. C. D.3、(4分)如图,在中,,,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则的度数()A. B. C. D.4、(4分)如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(1,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)5、(4分)在数轴上表示不等式x≥-2的解集
正确的是()A. B.C. D.6、(4分)将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180° C.减少360° D.增加360°7、(4分)如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4) B..(1,3) C..(2,4) D..(2,3)8、(4分)估计的值在()A.2和3之间 B.3和4之间C.4和5之间 D.5和6之间二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)的小数部分为_________.10、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.11、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.12、(4分)“6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折13、(4分)如图,在Rt△ABC中,∠A=30°,斜边AB=12,CD⊥AB于D,则AD=_____________.三、解答题(本大题共5个小题,共48分)14、(12分)若点,与点关于轴对称,则__.15、(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.16、(8分)如图所示,ΔABC的顶点在8×8的网格中的格点上.(1)画出ΔABC绕点A逆时针旋转90°得到的ΔA(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.17、(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.18、(10分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.20、(4分)若不等式(m-2)x>1的解集是x<,则m的取值范围是______.21、(4分)因式分解:___.22、(4分)当__________时,分式的值等于零.23、(4分)在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.(1)求一次函数的解析式.(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.25、(10分)如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.(1)利用尺规作图(保留作图痕迹):分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E,则∠AEB=60°;(2)在前面的条件下,取BE中点M,过点M的直线分别交边AB、CD于点P、Q.①当PQ⊥BE时,求证:BP=2AP;②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.26、(12分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.2、D【解析】
此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:.故选:D.此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程3、D【解析】
先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【详解】解:∵AB=AC,∠BAC=130°,
∴∠B=(180°-130°)÷2=25°,
∵EF垂直平分AB,
∴BF=AF,
∴∠BAF=∠B=25°.故选D.本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.4、C【解析】
根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.【详解】解:因为点D(5,3)在边AB上,
所以AB=BC=5,BD=5-3=2;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=2,
所以D′(-2,0);
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为10,到y轴的距离为2,
所以D′(2,10),
综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).
故选C.本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.5、D【解析】
根据在数轴上表示不等式解集的方法利用排除法进行解答.【详解】∵不等式x⩾−2中包含等于号,∴必须用实心圆点,∴可排除A.C,∵不等式x⩾−2中是大于等于,∴折线应向右折,∴可排除B.故选:D.此题考查在数轴上表示不等式的解集,解题关键在于掌握数轴的表示方法6、D【解析】
利用多边形的内角和公式即可求出答案.【详解】解:n边形的内角和是(n-2)•180°,n+2边形的内角和是n•180°,因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.故选:D.本题考查多边形的内角和公式,熟记内角和公式是解题的关键.7、A【解析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.【详解】∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选A.本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.8、C【解析】
由可知,再估计的范围即可.【详解】解:,.故选:C.本题考查了实数的估算,熟练的确定一个无理数介于哪两个整数之间是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、﹣1.【解析】解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.10、1.【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==1cm.故答案为:1.此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.11、1【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.【详解】解:∵,,根据勾股定理得,∵四边形是平行四边形,,∴当取最小值时,线段最短,即时最短,是的中位线,,,故答案为:1.本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.12、八.【解析】
设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,
由题意得360×0.1x-240≥240×20%,
解得:x≥1.
则要保持利润不低于20%,至多打1折.
故答案为:八.本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.13、1【解析】
根据30°角所对的直角边是斜边的一半,可得BC=6,然后利用勾股定理求出AC,再次利用30°所对的直角边的性质得到CD=AC,最后用勾股定理求出AD.【详解】∵在Rt△ABC中,∠A=30°,斜边AB=12,∴BC=AB=6∴AC=∵在Rt△ACD中,∠A=30°∴CD=AC=∴AD=故答案为:1.本题考查含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.三、解答题(本大题共5个小题,共48分)14、【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.【详解】解:点,与点关于轴对称,.故答案为:.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.15、(1)证明见解析;(2).【解析】
(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【详解】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BD⊥EF,设BE=x,则
DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键16、(1)见解析;(2)见解析.【解析】
(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;(2)如图有三种情况,构造平行四边形即可.【详解】解:(1)如图ΔAB(2)如图,D、D’、D’’均为所求.本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.17、(1)见解析;(2)当t=或12时,△DEF为直角三角形.【解析】
(1)根据三角形内角和定理得到∠C=30°,根据直角三角形的性质求出DF,得到DF=AE,根据平行四边形的判定定理证明;(2)分∠EDF=90°、∠DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.【详解】(1)∵∠B=90°,∠A=60°,∴∠C=30°,∴AB=AC=30,由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,∴DF=CD=2t,∴DF=AE,∵DF∥AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE∥BC,∴∠ADE=∠C=30°,∴AD=2AE,即60﹣4t=2t×2,解得,t=,当∠DEF=90°时,如图②,∵AD∥EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60﹣4t),解得,t=12,综上所述,当t=或12时,△DEF为直角三角形.本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.18、(1)0.58;(2)0.6;(3)白球12(个),黑球8(个)【解析】
(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.【详解】(1)a==0.58,故答案为:0.58;(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60;(3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).答:黑球8个,白球12个.本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.一、填空题(本大题共5个小题,每小题4分,共20分)19、y=-2x-1.【解析】
直接根据“上加下减”的平移规律求解即可.【详解】直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.故答案为:y=-2x-1.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.20、m<1【解析】
根据不等式的性质和解集得出m-1<0,求出即可.【详解】∵不等式(m-1)x>1的解集是x<,
∴m-1<0,
即m<1.
故答案是:m<1.考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.21、2a(a-2)【解析】
22、-2【解析】
令分子为0,分母不为0即可求解.【详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.此题主要考查分式的值,解题的关键是熟知分式的性质.23、答案为甲【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、解答题(本大题共3个小题,共30分)24、(4)y=x+4.(4);(4)不变,.【解析】试题分析:(4)用待定系数法,将M,N两点坐标代入解析式求出k,b即得一次函数解析式;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴于P,易证△BDO≌△DEP,∴OD=PE,DP=BO=4,设D(,0),则E(,),设直线CE解析式是:y=kx+b,把C,E两点坐标代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(4)此题连接BM,因为AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=445º,∴∠MBP=∠PAO=445º,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜边中线,等于斜边一半,BQ=MP,MP又是正方形对角线,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不变,是.试题解析:(4)用待定系数法,将M,N两点坐标代入解析式得:,解得b=4,k=4,∴一次函数的解析式是y=x+4;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴,易证△BDO≌△DEP,设D(,0),则E(,)设直线CE解析式是:y=kx+b,,把C,E两点坐标代入得:,∴∴CE解析式:y=x-4,y=0时,,x=4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===.∴的值是.(4)连结BM,由正方形性质可得OM=OP,∠MOP=90º,由A,B点坐标可得AO=BO,又∵∠BOM=∠AOP(同角的余角相等),可证△BOM≌△AOP(SAS),∴∠MBO=∠PAO=480º-45º=445°,∴∠MBP=445º-45º=90°,在Rt△MBP中,MQ=PQ,BQ是此直角三角形斜边中线,等于斜边一半,∴BQ=MP;在Rt△MOP中,,MP=OP;∴BQ:OP=MP:OP=×OP:OP=,当点P在直线AB上运动时,的值不变,是,∴考点:4.一次函数性质;4.三角形全等;4.正方形性质.25、(1)见解析;(2)①见解析;②NQ=2MQ或NQ=MQ.理由见解析【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏州科技大学天平学院《中国经典管弦乐曲赏析》2021-2022学年第一学期期末试卷
- 2024宾馆经营承包合同
- 苏州科技大学天平学院《市场营销学》2022-2023学年第一学期期末试卷
- 托儿所服务的家庭参与与合作考核试卷
- 中高端服饰品牌推广案例分析考核试卷
- 化学矿物的利用与市场发展前景研究考核试卷
- 固体饮料行业品牌传播与宣传效果评估与分析考核试卷
- 摩托车的空气动力学与气动性能考核试卷
- 有效的销售和谈判技巧考核试卷
- 广告创意设计趋势展望考核试卷
- 《小学数学万能说课稿》
- 合伙开工厂合同范例
- 中医培训课件:《经穴推拿术》
- 二年级上册《生态 生命 安全》教案
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)地理试卷
- 《酒泉市旅游民宿高质量发展特征、面临的问题及完善策略》
- 无人机租赁合同
- 《光伏电站运行与维护》试题及答案一
- 输血科三基模拟题(含参考答案)
- 2024下半年国家药品监督管理局药品审评中心编制内人员招聘15人历年高频难、易错点500题模拟试题附带答案详解
- 全国教师管理信息系统-业务功能培训(省级培训材料)
评论
0/150
提交评论