标准解读
《GB/T 44234-2024 纳米技术 纳米材料与气体表界面作用热力学参数和动力学参数测量 谐振微质量法》这一标准主要规定了利用谐振微质量技术来测定纳米材料与其表面吸附气体之间的热力学及动力学参数的方法、程序、设备要求和数据处理方法。此标准适用于研究纳米尺度材料在不同气体环境中的相互作用特性,对于理解纳米材料的物理化学性质、开发新材料及优化相关应用具有重要意义。
标准内容概览:
-
范围:明确了该标准适用的纳米材料类型及其与气体分子在表界面作用时,如何通过谐振微质量技术来测量相关的热力学(如吸附焓、熵变)和动力学(如吸附速率常数、解吸动力学)参数。
-
规范性引用文件:列出了实施本标准时所依据或参考的其他国家标准或国际标准,确保测试方法的标准化和可比性。
-
术语和定义:对涉及的关键术语进行了解释,如谐振微质量传感器、吸附量、热力学稳定性等,以便读者准确理解标准内容。
-
原理:阐述了谐振微质量法的基本工作原理,即通过监测纳米材料吸附气体前后谐振器频率的变化,来推算吸附物质的质量变化,进而计算出热力学和动力学参数。
-
仪器设备与试剂:详细描述了进行此类测量所需的仪器设备规格、性能要求以及实验中应使用的气体纯度等,确保实验结果的准确性和重复性。
-
样品制备与处理:规定了纳米材料样品的制备方法、处理步骤及必要的预处理条件,以保证测试样品的代表性。
-
测量步骤与方法:详细说明了实验操作流程,包括传感器的校准、气体环境的控制、数据采集周期、以及如何根据测量数据计算热力学和动力学参数的具体算法。
-
数据处理与分析:提供了数据处理的标准化方法,包括如何校正背景信号、处理噪声数据、以及如何通过数学模型拟合得到所需参数。
-
试验报告:规定了试验报告应包含的信息内容,如实验条件、测试结果、数据分析及结论,确保实验记录的完整性和透明度。
实施意义:
该标准的出台为纳米材料与气体相互作用的研究提供了一套统一、科学的测量方法,有助于促进纳米科技领域内研究成果的共享与验证,推动材料科学、环境保护、能源存储与转化等相关领域的技术创新与发展。
如需获取更多详尽信息,请直接参考下方经官方授权发布的权威标准文档。
....
查看全部
- 即将实施
- 暂未开始实施
- 2024-08-23 颁布
- 2025-03-01 实施
文档简介
ICS
17.200
CCS
A42
中华人民共和国国家标准
GB/T44234—2024
纳米技术纳米材料与气体表界面作用
热力学参数和动力学参数测量
谐振微质量法
Nanotechnology—Measurementofthermodynamicandkineticparametersof
interfaceinteractionbetweennanomaterialsandgases—Microgravimetric
analysismethod
2024-08-23发布2025-03-01实施
国家市场监督管理总局发布
国家标准化管理委员会
GB/T44234—2024
目次
前言
·····································································································
Ⅲ
引言
·····································································································
Ⅳ
1
范围
··································································································
1
2
规范性引用文件
······················································································
1
3
术语和定义
···························································································
1
4
符号
··································································································
2
5
方法原理
······························································································
3
5.1
谐振式微悬臂梁的工作原理
·····································································
3
5.2
热力学参数与动力学参数的计算
································································
3
6
仪器和设备
···························································································
4
6.1
测试装置
·························································································
4
6.2
动态配气系统
····················································································
4
6.3
恒温箱
···························································································
4
6.4
接口电路和控制系统
·············································································
5
6.5
谐振式微悬臂梁
·················································································
5
7
测试样品和试剂
······················································································
5
7.1
测试样品
·························································································
5
7.2
稀释气
···························································································
5
7.3
测试气
···························································································
5
7.4
分散剂
···························································································
5
8
测试方法
······························································································
6
8.1
标准测试条件
····················································································
6
8.2
样品涂覆
·························································································
6
8.3
样品测试
·························································································
6
9
数据处理
······························································································
6
9.1
热力学参数
······················································································
6
9.2
动力学参数─活化能Ea
·······································································
8
10
测试报告
····························································································
8
附录A(资料性)介孔纳米颗粒材料吸附热力学参数的测量实例
···································
9
附录B(资料性)纳米材料吸附动力学参数的测量实例
············································
13
附录C(资料性)测试报告格式
·····································································
16
参考文献
································································································
17
Ⅰ
GB/T44234—2024
前言
本文件按照GB/T1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规
定起草。
请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。
本文件由中国科学院提出。
本文件由全国纳米技术标准化技术委员会(SAC/TC279)归口。
本文件起草单位:中国科学院上海微系统与信息技术研究所、国家纳米科学中心、厦门海恩迈科技
有限公司、上海纳米技术及应用国家工程研究中心有限公司、同济大学、中国计量科学研究院。
本文件主要起草人:李昕欣、许鹏程、于海涛、葛广路、程鑫彬、何丹农、任玲玲、朱君、金涵。
Ⅲ
GB/T44234—2024
引言
基于界面分子作用的功能纳米材料,在信息获取、生态环境、新能源和健康医疗等领域应用十分广
泛。本文件描述了一种利用谐振微悬臂梁作为核心测量工具的谐振微质量法,目的是为纳米材料与气体
界面作用热力学参数和动力学参数的获取提供一种标准的测量方法。该方法能够有效避免传统测量方法
的问题,获得包括焓变、熵变、吉布斯自由能、活化能等在内的热力学参数和动力学参数,兼顾科学研
究和产业应用的需求。
Ⅳ
GB/T44234—2024
纳米技术纳米材料与气体表界面作用
热力学参数和动力学参数测量
谐振微质量法
1范围
本文件描述了基于谐振微质量法获得纳米材料与气体界面作用热力学参数和动力学参数的方法,包
括方法原理、仪器和设备、测试样品和试剂、测试方法、数据处理、测试报告。
本文件适用于热力学参数与动力学参数的测量,包括标准焓变(ΔH°)、标准熵变(ΔS°)、标准吉
布斯自由能变(ΔG°)、活化能(Ea)等。
2规范性引用文件
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文
件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用
于本文件。
GB/T2298—2010机械振动、冲击与状态监测词汇
GB/T13464—2008物质热稳定性的热分析试验方法
GB/T21650.2—2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸
附
温馨提示
- 1. 本站所提供的标准文本仅供个人学习、研究之用,未经授权,严禁复制、发行、汇编、翻译或网络传播等,侵权必究。
- 2. 本站所提供的标准均为PDF格式电子版文本(可阅读打印),因数字商品的特殊性,一经售出,不提供退换货服务。
- 3. 标准文档要求电子版与印刷版保持一致,所以下载的文档中可能包含空白页,非文档质量问题。
最新文档
- 2024年统一损失赔偿合同范本一
- 2024年咖啡饮品加盟连锁经营合同范本3篇
- 温度温度显示器课程设计
- 浙大生物制药课程设计
- 油梁式抽油机课程设计
- (标准员)基础知识样卷(共六卷)
- 安全月活动总结试题
- 2024年美术教案课件
- 财务风险管理概述
- 运动器材店服务员工作总结
- 【企业盈利能力探析的国内外文献综述2400字】
- 医学生创新创业基础智慧树知到期末考试答案2024年
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 建筑施工成品保护措施
- 鱼骨图PPT模板精品教案0002
- 教科版三年级上册科学期末测试卷(二)【含答案】
- 冠状动脉造影基本知识-
- 油墨组成和分类
- DB37T 5175-2021 建筑与市政工程绿色施工技术标准
- 自动喷漆线使用说明书
- 科研项目评审评分表
评论
0/150
提交评论