版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Incollaborationwith
BostonConsultingGroup
ScalingLow-Carbon
DesignandConstruction
withConcrete:Enabling
thePathtoNet-Zerofor
BuildingsandInfrastructure
WHITEPAPER
MARCH2023
Images:GettyImages,AdobeStock
Contents
Foreword3
Executivesummary4
1Introduction6
2Thepotentialoflow-carbondesignandconstruction9
3Obstaclestoscaling12
4Sevenstepstoscalelow-carbondesignandconstruction15
withconcrete
Conclusion22
Contributors23
Endnotes24
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontribution
toaproject,insightareaorinteraction.
Thefindings,interpretationsand
conclusionsexpressedhereinarearesult
ofacollaborativeprocessfacilitatedand
endorsedbytheWorldEconomicForum
butwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomic
Forum,northeentiretyofitsMembers,
Partnersorotherstakeholders.
©2023WorldEconomicForum.Allrights
reserved.Nopartofthispublicationmay
bereproducedortransmittedinanyform
orbyanymeans,includingphotocopying
andrecording,orbyanyinformation
storageandretrievalsystem.
ScalingLow-CarbonDesignandConstructionwithConcrete2
March2023
WorldEconomicForumGlobalCementandConcreteAssociationBostonConsultingGroup
ScalingLow-CarbonDesignandConstructionwithConcrete:
EnablingthePathtoNet-ZeroforBuildingsandInfrastructure
Foreword
MartaGuzzafame
ManagingDirectorandPartner,
JeremyJurgensManagingDirector,
ThomasGuillot
ChiefExecutiveOfficer,
Mitigatingclimatechangebydecarbonizingconstruction,andmorespecificallymaterialsusedinconstructionsuchasconcreteandsteel,isacrucialandcomplexpriority.Thisreportfocusesonaddressingthechallengesinreducingemissionsfromcementandconcretebydeployinglow-carbondesigntechniquesandusinglow-carbonmaterialsatscale.
Overthepastseveralyears,ourorganizationsandothershavedonemuchworktocreatedemandforlow-carbonconcreteandconstructionfrompublicandprivatebuyers,inordertocatalyseinvestmentinconcretedecarbonization.ExamplesofthisworkincludeourpreviouspublicationssuchasGreenPublicProcurement:CatalysingtheNet-ZeroEconomyandLow-CarbonConcreteandConstruction:AReviewofGreenPublicProcurementProgrammes,whichprovideframeworksforgreenpublicprocurement;aswellasinitiativessuchastheFirstMoversCoalition,whichatCOP27inNovember2022launchedaprivate-sectorcommitmentframeworkforpurchasingnear-zerocementandconcrete.
Tobuildonourpreviouswork,andtosupportthedesignandconstructionoflower-carbonprojectsatscale,itbecameclearthatwemustalsoengagethedesignandconstructionplayersthatoperatebetweenprojectprocurementandmaterialproductionandmakecriticaldecisionsaboutconcreteuse,whichinfluenceprojects’carbonfootprint.Architecture,engineeringandconstruction(AEC)firmsmustscaletheuseoflow-carbonmaterialsanddesigntechniquesinordertoreducethecarbonfootprintofbuildingsandinfrastructure.
Toproducethisreport,weundertookaseriesofdiscussionsacrosstheAECandcementandconcreteproductioncommunities.Duringthesediscussions,companyleaderssharedtheirobjectives,strategies,reservationsandchallengesrelatedtoscalinglow-carbondesignandreducingconcreteemissions.Weencounteredarangeofcomplexconcernsandinsomecasesfrustrations,butalsoexamplesofpromisingprogressandinnovations,whichhavehelpedtomouldthisreport.
Thepurposeofthisreportistoprovideaframeworkforscalinglow-carbondesignwithconcretethatplayersacrossthevaluechaincanadopt.WhileourprimaryfocusisonthesolutionsthattheAECandcementandconcretemanufacturingindustriescanactupon,wealsorecognizethecriticalinfluenceofprojectbuyersandgovernmentsandhaveincludedtheactionstheycantaketosupportlow-carbondesign.Additionally,whilethefocusofthisreportisoncementandconcrete,manyoftheideasdescribedcanbeappliedtoreducingemissionsfromotherbuildingmaterialsandfromentireprojects.
Implementingthesesolutionswillnotbeeasybutdefiningthemisanimportantstartingpointandonethatwehopewillinspireaction.Trendsincorporatedecarbonizationcommitmentsandgreenpublicprocurementprogrammes–aswellasthegrowingpressureoncompaniestoliveuptotheirsustainabilitygoals–indicatethatlow-carbondesignandproductionoflow-carbonmaterialswillincreasinglybecomecapabilitiesthatAECfirmsandmaterialsproducerswillneedtoadopttoremaincompetitiveinthefuture.Webelievethatfirmsthatbeginthejourneyofscalinglow-carbondesignnowaremakingsmartinvestments,notonlyinthesustainabilityofourplanet,butinthesustainabilityoftheirbusinesses.
ScalingLow-CarbonDesignandConstructionwithConcrete3
Executivesummary
Theworldisinthemidstofaninfrastructureandbuildingsboom.Ineverypartoftheglobe,andespeciallysointhedevelopingworld,urbancommercialcentresandresidentialhousingareexpandingaseconomiesgrow.Atthesametime,newroadsandbridgesarebeingpavedanddesignedtoprovidelogisticschannelsformovingparts,supplies,manufacturedgoodsaswellascommuters,whileoldinfrastructureisbeingmodernized.Thisisallpotentiallygoodnewsfortheglobaleconomy,exceptoneglaringdownside:buildingsandinfrastructureareresponsibleforapproximately40%ofglobalcarbonemissionseachyear,around15gigatonnes(Gt).1
Unabated,thisnumbercouldgrowdramatically,effectivelyundercuttingdecarbonizationeffortsinothersectors.
Asubstantialshareoftheseemissionsisreleasedbeforeanassetiseverused.Theproductionofmaterialsaccountsfor15-20%ofbuildingsemissionsand50-60%ofinfrastructureemissions(seeFigure1).Amongbuildingmaterials,concreteaccountsforaround30%ofbuildingmaterialsemissions(seeFigure2)and7%ofglobalcarbonemissions.2
Yet,concretepossessesqualitiesthatmakeitubiquitousandimportantinconstruction–durability,resilience,thermalcapacity,localavailability,relativeaffordabilityandtheabilitytomeethighlyvariablefunctionalrequirements.Therefore,inordertoreducethecarbonfootprintofbuildingsandinfrastructure,itiscriticaltoexaminethemanufactureanduseofconcrete.In2021,thecementandconcreteindustrypublisheditsroadmaptonet-zeroconcreteby2050throughtheGlobalCementandConcreteAssociation,inwhichitidentifiedtheactionsandpolicyenablersnecessarytodecarbonizetheentirevaluechainofthesector.Theroadmapidentifiedthevaluableroleoflow-carbondesignandconstruction.
Thispaperexamineshowtoscalethislever.
Thepotential
ThedecisionsmadebyAECfirmsabouthowtouseconcretehaveanimpacton–andifdecidedwithintentionality,canreduce–astructure’slifetimeemissionsinseveralways.Mostimmediately,decarbonizingthecementmanufacturingprocessusingnear-term(availableby2030)technologies,specifyinglower-carbonconcreteformulations,andoptimizingthevolumeofmaterialused,canreduceproject-levelcarbonemissionsfromconcretebyupto40%(seeFigure4).Furthermore,thewayconcreteisusedinastructure’sdesigncanbeoptimizedtoimproveitsthermalefficiency,longevityandcircularity,furtherreducingitscarbonfootprint.
Theobstacles
Althoughreducingcarbonemissionsinbuildingsandinfrastructureisanimportantopportunityrequiringswiftaction,aseriesofobstaclespreventslow-carbondesignandconstructionwithconcretefrombeingdeployedatscaletoday.
Tobeginwith,measurementofcarbonemissionsacrosstheentirelifecycleofaproject,anduseofdatatoimprovedesigndecisionsandtrackprogress,isnottheindustrynorm.Thisis,inpart,becauseofthecomplexityoflifetimecarbonassessmentcalculationsandalackofavailabledatainputs.Itcanalsobeattributedtoalackofmandatesforcarbonmeasurementfromgovernments,clientsandfirms.
Fragmentationinthedesignandbuildingprocessalsostandsinthewayofachievinglower-carbonoutcomes.Differentphasesofdesignandconstructionarehandledbydifferentteamsandfirms,oftenwithminimalcoordination,limitingvisibilityintosupplychainsandimpedingexchangesofinformationandideas.
Addingtothesechallenges,low-carbondesigntechniquesandproductsarenotalwaysalignedwithindustrynormsanddocumentedcodesandstandards,makingitriskyforfirmstodeploythem.
Perhapsmostimportantly,manyclients,publicandprivate,arenotprioritizingcarbonreduction(whichcansometimesincreasematerialandprojectcosts)intheirprocurementdecisions.ThisnotonlymakesitdifficultforAECfirmstoprioritizelow-carbondesign,butcreatesuncertaintyamongcementmanufacturersaboutthedemandforlow-carbonproducts,discouragingthemfrominvestingindecarbonizingtheirproductionprocesses.Thisadverselyaffectstheeconomicsandsupplyoflow-emissionscementandconcreteproducts,creatingcircularchallengesandmakingdesignershesitanttospecifythem.
Thesolution
Thisreportoffersaseven-partframeworkforovercomingthechallengesandconcernsthathavestymiedlow-carbondesignofbuildingsandinfrastructureprojectswithconcrete.EnactingthisframeworkrequiresactionandsupportfromAECfirms,cementandconcretemanufacturers,projectbuyersandinvestors,andgovernments.
ScalingLow-CarbonDesignandConstructionwithConcrete4
1.Adoptconsistentlife-cycleemissionsmeasurement
AECfirmsmustconductproject-level,life-cyclecarbonassessments,anddosoconsistently,inordertoinformresponsibledesigndecisionsandcreateaccountability.Thecementandconcreteindustry,onitspart,mustmorefrequentlyprovidedetailedenvironmentalproductdeclarations(EPDs).
2.Increasecollaborationacrossthevaluechain
EnhancedcommunicationduringtheprojectdesignprocessbetweenAECfirmsandconcretemanufacturerscanimprovesupplychainvisibilityandfacilitatelower-carbonprojectoutcomes.
3.Reduceriskthroughpiloting,dataandengagement
Whenstandards,codesandindustrynormsworkagainstreducingcarbonemissionsonbuildingsandinfrastructureprojects,AECfirmsandcementandconcreteproducersmustbewillingtopushforchangebyparticipatingindialogueswithclients,academiaandindustrybodiestorunpilots,investinresearch,gatherdurabilitydataandupdatestandards.
4.Evolveoperatingmodelswithextensiveleadershipsupport
AECfirmsmusthaveclearmandatesfromthehighestlevelsofleadershiptoprioritizelow-carbondesign,sothattheycaneffectivelyupskillandenableteamstoachievelower-carbonoutcomes.
5.Signaldemandandscalesupply
Bycommittingtospecifyanddesignforanincreasedvolumeoflow-carbonmaterialsandprojects,AECfirmscanhelpmakethebusinesscaseforcementandconcretemanufacturerstoinvestintheplantupgradesneededtoproducethesematerialsatscale,improvingtheireconomicsandavailability.
6.Prioritizecarbonreductioninprocurement
Projectbuyers,bothpublicandprivate,canhavemeaningfulinfluenceindrivingtheAECandcementmanufacturingindustriestoact,byrequiringdisclosureofprojectandmaterialsemissionsandprioritizingcarbonreductioninthepartnerselectionanddesignprocess.AlongsidedemandsignalsfromAECfirms,thiscanalsohelpdrivethenecessaryinvestmentsintechnologyandmanufacturing.
7.Establishsupportivepublicpolicy
Governmentscansupporttheabovestepsandaccelerateprogressthrougharangeofpolicyactionsincludingregulation,incentivesandfunding,andbyprovidingleadershiptoaddresskeyindustrychallenges.
Giventheurgencyofreducingemissionsfrombuildingsandinfrastructure,andthepotentialoflow-carbondesignandconstructionusingconcrete,allstakeholders–AECfirms,cementandconcretemanufacturers,publicandprivatebuyersofconstructionprojectsandgovernments–musttaketheseactionsearnestlyandspeedily.
ScalingLow-CarbonDesignandConstructionwithConcrete5
1
Introduction
Scalinglow-carbondesignwithconcrete:Apathtonet-zeroconstruction.
throughenergyconsumption,repairs,maintenanceandattheendofitslife,fromdemolitionandwaste.Thedesigndecisionsmadebyprojectbuyersandinvestors,architectsandengineersbeforeconstructionbegins,andthechoicesthatcontractorsmakethroughoutthebuildingprocessaboutwhichmaterialstouseandhowtousethem,haveameaningfulimpactonthetotallife-cycleemissionsofanasset.
Buildingsandinfrastructureareresponsible
forapproximately40%oftheworld’scarbon
emissionseachyear.Ameaningfulshareofthese
emissionsisreleasedbeforeanassetiseverused
–throughtheproductionofbuildingmaterials(an
estimated15-20%forbuildingsand50-60%for
infrastructure,althoughitcanvarywidelybyproject
andgeography)andconstructionactivities.The
remainderareemittedduringtheuseofanasset
FIGURE1Thebuiltenvironmentisresponsibleforaround40%ofglobalemissions
acrossthefullprojectlife-cycle
Builtenvironmentlifecycle
PrimaryAECandcementindustryengagement
~40%oftotalglobalCO2
75-80%
2
Negligible,but
%emissions
ofGtCO2
50-60%
2
Sources:IEA,“2020EnergyTechnologyPerspectives”;IEA,“TrackingReport-Buildings”;BCGanalysis.
Note:Life-cycleanalysisbasedonEuropeanStandardsEN-15978–includesmaterials,construction,operationandend-of-lifeemissions;excludescreditofmaterialreuseandrecycling.
influences
emissions
across
valuechain
11-13GtCO
Buildings
Infrastructure
20-30%
15-20%
10-15%
5-10%
2-3GtCO
<5%
<5%
emissions(37GtCO2)AECandcementindustryinfluence
~15GtCO2Architecture,MaterialBuildingof
TotalbuiientCO2sfproi
Endoflife
StageDesignProductConstructionUse
Disassemblyand
recyclingor
disposalofwaste
Theroleofcementandconcrete
Concreteandcement(anessentialmaterialinconcrete)arethemostconsumedhuman-maderesourcesonEarth,responsibleforapproximately7%ofglobalcarbonemissionsand30%ofmaterialemissionsforbuildings.Thecentralityofconcreteandcementaffectsthecarbonfootprintofbuildingsandinfrastructureintwocrucialways:directlythroughtheirowncarbonemissionsgeneratedduringmanufacturingandconstruction,andindirectlythroughtheirpositivecontributiontothebuiltproject’senergyefficiency,durabilityandlongevity.
Globaldemandforcementisincreasing,andintheabsenceofanyactiontorespondtocallsfornetzeroemissions,itisforecasttogrowby20%from2020to2030.3Manyofconcrete’spropertiesincludingitsstrength,durability,fireresistance,circularity,availability,resilience,thermalpropertiesandaffordabilitymakeitindispensableforcriticalinfrastructureandbuildings,whichultimatelyimpactthehealth,safetyandqualityoflifeofbillionsofpeople.Therefore,inordertoreducetheemissionsofbuildingsandinfrastructurewhilemeetingsocietalneeds,itisimperativetoexaminetheuseofconcrete,andwaystoreducethecarbonemissionsrelatedtoit.
ScalingLow-CarbonDesignandConstructionwithConcrete6
FIGURE2Concreteisresponsibleforapproximately30%ofmaterialsemissionsforbuildings
Buildingsandshareofmaterials-relatedemissions
25%
Steel
10%
Chemicals
andplastics
23%
Other
buildingmaterials
12%
Aluminium
30%
Concrete
Source:BCGanalysis.
Theroleofdesign
Alongwithmaterialsproducersthatsupplythecement,concreteandothermaterialsusedinconstruction,AECfirmscansignificantlyinfluenceaproject’scarbonemissions.Thechoicesthesefirmsmakeintheinitialstagesofaprojectdeterminethematerialsandconstructiontechniquesused,theenergyconsumption,repairsandmaintenanceduringoperation,andtheresilience,longevity,circularityandrecyclabilityattheendoflife.Thesefactorsultimatelydetermineaproject’stotalcarbonemissionsovermanyyears.Thesedesigndecisionsareofcoursealsoinfluencedbyprojectbuyers(publicandprivate),whosetprojectprioritiesandbudgets,andbygovernmentsthatissuebuildingandconstructionregulations.
Bysettingandworkingtowardsagoaltominimizecarbonemissionsfromtheverybeginningofaproject,projectbuyers,AECfirms,andcementandconcreteproducerscancollaborateto
reducecarbonemissionsacrossthebuildingandinfrastructurelifecycle.Thereareobstaclestodoingthisandchallengestoaddress,butthisisahugeopportunitythatcouldmakeacriticaldifferenceinreachingthegoaloflimitingtheglobalaveragetemperatureincreaseto1.5°Cabovepre-industriallevels.
ScalingLow-CarbonDesignandConstructionwithConcrete7
FIGURE3Anillustrativeviewofthebuildingsandinfrastructurevaluechain
Industry
Designsandbuildsprojects
Cementandconcreteproducer
Manufacturesanddeliversmaterials
Engineeringfirm
Designsstructuralsystemandspecifiesmaterials
Constructionfirm
Procuresmaterials,
schedulesprojectsand
constructsstructure
Designsaccordingtoclientneedsandgovernment
regulations
Architecturefirm
Client
Definesprojectrequirementsandfunctionalandaestheticneeds
Government
Regulatesbuildingsandconstruction
Source:BCGanalysis.
accordinglybeprioritizedbyAECfirms,cementandconcreteproducers,projectbuyers,investorsandgovernments.
Toscalelow-carbonpracticesintheindustry,
low-carbondesignandconstructionmustbe
recognizedasacriticalenablerforreducing
thecarbonfootprintofbuildings,andmust
ScalingLow-CarbonDesignandConstructionwithConcrete8
2
~16%
100%
Furtheractionsareneededtoreachnetzeroby2050
Thepotentialoflow-carbondesignandconstruction
Large-scaledeploymentoflow-carbondesigntacticsandtheuseofexistingandupcomingmanufacturingtechnologiescanmeaningfullyreducethecarbonfootprintofconstructionprojects.
Thetotalconcreteemissionsinaprojectcanbereducedbyupto40%by2030(seeFigure4)byusingexistingorupcomingtechnologyinthemanufacturingprocess,specifyingtheuseoflow-carbonconcreteproducts,andoptimizing
thevolumeofmaterialsused.Additionally,other
techniquesrelatedtotheconstruction,useand
end-of-lifestagescanfurthershrinkastructure’s
carbonfootprintoveritslifecycle.
FIGURE4
Low-carbondesigncanreducethecementandconcreteemissionsof
constructionprojectsbyupto40%inthenearterm
2030outlook
~6%
~18%
~60%
Manufacturingprocessdecarbonization
Specifyinglower-carbon
cementandconcrete
products
Optimizingvolumeofmaterial
Remainder
CementandconcreteCO2
emissions
Expected2030emissionsin
theabsenceofanyaction
MostdirectlyinfluencedbycementandconcreteproducersMostdirectlyinfluencedbyAEC
Sources:GlobalCementandConcreteAssociation,ConcreteFuture–TheGCCA2050CementandConcreteIndustryRoadmapforNetZeroConcrete,2021;InstitutionofCivilEngineers,LowCarbonConcreteRoutemap,2021;AProject-BasedComparisonBetweenReinforcedandPost-TensionedStructuresfroma
SustainabilityPerspective,2011;UniversityofWollongong,Environmentalimpactassessmentofposttensionedandreinforcedconcreteslabconstruction,2013;BCGanalysis.
ScalingLow-CarbonDesignandConstructionwithConcrete9
BOX1
highermaintenanceandearlierreplacement?Thesealternativesshouldnotbecomparedonlyoninitialcarbonimpacts,butovertheentirelifetime.
ClientsandAECfirmsmustalsoconsidertrade-offsbetweenemissionsreductiondesigntacticsandotherprojectcriteriasuchascost,projectschedulingandaesthetics.Theymustalsobethoughtfulabouthowmuchnewconstructionisundertakenwhilekeepinginmindopportunitiesforrefurbishingandrepurposingexistingstructures.
Holisticdesigndecision-making
Designersmustholisticallyassessthevariousleverstheyuse,andoverthewholeprojectlifecycle,inordertomaximizeemissionsreductionswhilemeetingprojectgoals.Forexample,designsthatmaximizeenergyefficiencymayrequiremorecarbon-intensivematerials.
Clientsanddesignersfacechoiceswhiledesigningtheservicelifeofaproject:dotheywanttodesignalong-lasting,resilientprojectwithlowmaintenance,oraprojectwithashorterlifespanthatwillneed
carbonintensityandquantityofcementcanbeoptimizedforloweremissions.Forexample,theuseofhigher-strengthconcrete,whichisoftenmorecarbonintensive,sometimesenablestheuseoflesservolume.Thesetrade-offshavetobeassessedonacase-by-casebasis.Beyondthedesignphase,efficientuseofcementandconcreteduringconstructioncanalsoreducethevolumeofmaterialusedandtheassociatedcarbonfootprint.
2.Enablingthermalefficiency
Inmanysituations,designerscanuseconcrete’shighthermalcapacity,thatis,itsabilitytostoreheat,aspartofaheatingand/orcoolingstrategytoreduceoperationalenergy.Thisisacomplexandnuancedconsiderationasdesigntacticsthatincorporatethermalefficiencydependongeography,use,environmentaldesignandotherfactors.
3.Increasingstructuralresilienceandlongevity
Giventheincreaseinextremeweathereventsduetoclimatechange,concreteisanespeciallyvaluablematerialsinceithasinherentpropertiesthatenabledesignerstodeliverlongevityandresiliencewithlittleornoextramaterials.Concrete’shighdensityandrigiditymakeitextremelydurableagainstrain,flooding,humidity,strongwinds,freezing,chemicalsandotherthreats.Therefore,concretecanbeusedtoincreasetheoveralllifespanofbuildingsandinfrastructureandminimizerepairsandmaintenance,delayingoravoidingadditionalproduct-andconstruction-stageemissions.
4.Designingfordisassembly
“Designfordisassembly”(DfD)isanapproachthatusesmodularbuildingtechniquestoallowforreusingmaterialsafterbuildingdeconstruction.TheDfDplanningprocessmakesmaterialreuseandreturnplansclearearlyinthedesignphaseinordertomaximizethereuseofelementsandavoidwasteattheendoflife.
Foursignificantlow-carbondesignleversinclude:
1.Reducingthecarbonfootprintofmaterials
Manufacturingprocessdecarbonization:
Anumberofdecarbonizationleverscan
bedeployedinthecementmanufacturing
processthatdonotaffecttheproperties
oftheendproductsotherthantheirglobal
warmingpotential(GWP,thestandardunit
ofmeasurementofcarbonemissions).
Examplesincludetheuseofalternative
fuelsandrenewableenergyandefficiency
improvements.Whilelargelybeingdeployed
asfirstoftheirkindprojects,carboncapture
andstorage(CCS)technologiesarealso
criticalproduction-sidedecarbonization
leversandareneededtofullydecarbonize
cementandconcretemanufacturing.Although
thesedecarbonizationleversfalllargelyon
manufacturerstoimplement,AECplayerscan
makespecificationsandpurchasingdecisions
basedontheGWPofmaterials.
Specificationoflower-carbonconcrete
products:Architectsandengineerstypically
specifythematerialsthatshouldbeusedinthe
projectstheydesign,sometimeswithinputfrom
constructionfirmsandmaterialsproducers.
SpecifyingconcreteproductswithlesserGWP
(whilemeetingtechnicalperformanceandsafety
requirements)canmakeasignificantdifference
inaproject’semissions.Themostcommon
productofthistypeisblendedcement,made
withsupplementarycementitiousmaterials
(SCMs),reducingthevolumeofclinkerused.
However,useofSCMsathighpercentages
typicallyreducesthestrengthgainrateof
concrete,whichcanimpactconstruction
schedules(andcosts)–anelementthat
engineersandconstructionfirmsmustbear
inmind.
Optimizationofmaterialvolume:The
overallquantityofconcreteinaprojectcan
bereducedthroughdesignchoices,suchas
thespacingandwidthofslabsandcolumns,
andtheuseofhollowspaces(mostfrequently
applicableinbuildings).Additionally,the
ScalingLow-CarbonDesignandConstructionwithConcrete10
Theframeworkdescribedinthisreportfocusesprimarilyonthefi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拍摄合同范例3篇
- 各种物品寄售合同范例
- 国际招标货物合同范例
- 亮化出租维修合同范例
- 日文劳务合同范例
- 渔网加工销售合同范例
- 墙体内粉刷合同范例
- 三基护理考试题与参考答案
- 急救理论知识考试模拟题(附答案)
- 债权担保协议合同范例
- 北京开放大学《自动控制技术及应用》终结性考试复习题库(附答案)
- 高中高一级部拔河比赛活动实施方案
- 每日食品安全检查记录
- 航空机务专业职业生涯规划书
- 八年级英语上学期期末考试(深圳卷)-2023-2024学年八年级英语上册单元重难点易错题精练(牛津深圳版)
- 项目成本节约措施总结报告
- 迎元旦趣味活动及知识竞赛试题及答案
- SH/T 3543-2007 石油化工建设工程项目施工过程技术文件规定
- 减盐控油控制体重规章制度
- 建筑之歌课件PPT
- (完整版)员工流失文献综述
评论
0/150
提交评论