用混凝土扩大低碳设计和施工:实现建筑和基础设施净零排放_第1页
用混凝土扩大低碳设计和施工:实现建筑和基础设施净零排放_第2页
用混凝土扩大低碳设计和施工:实现建筑和基础设施净零排放_第3页
用混凝土扩大低碳设计和施工:实现建筑和基础设施净零排放_第4页
用混凝土扩大低碳设计和施工:实现建筑和基础设施净零排放_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Incollaborationwith

BostonConsultingGroup

ScalingLow-Carbon

DesignandConstruction

withConcrete:Enabling

thePathtoNet-Zerofor

BuildingsandInfrastructure

WHITEPAPER

MARCH2023

Images:GettyImages,AdobeStock

Contents

Foreword3

Executivesummary4

1Introduction6

2Thepotentialoflow-carbondesignandconstruction9

3Obstaclestoscaling12

4Sevenstepstoscalelow-carbondesignandconstruction15

withconcrete

Conclusion22

Contributors23

Endnotes24

Disclaimer

Thisdocumentispublishedbythe

WorldEconomicForumasacontribution

toaproject,insightareaorinteraction.

Thefindings,interpretationsand

conclusionsexpressedhereinarearesult

ofacollaborativeprocessfacilitatedand

endorsedbytheWorldEconomicForum

butwhoseresultsdonotnecessarily

representtheviewsoftheWorldEconomic

Forum,northeentiretyofitsMembers,

Partnersorotherstakeholders.

©2023WorldEconomicForum.Allrights

reserved.Nopartofthispublicationmay

bereproducedortransmittedinanyform

orbyanymeans,includingphotocopying

andrecording,orbyanyinformation

storageandretrievalsystem.

ScalingLow-CarbonDesignandConstructionwithConcrete2

March2023

WorldEconomicForumGlobalCementandConcreteAssociationBostonConsultingGroup

ScalingLow-CarbonDesignandConstructionwithConcrete:

EnablingthePathtoNet-ZeroforBuildingsandInfrastructure

Foreword

MartaGuzzafame

ManagingDirectorandPartner,

JeremyJurgensManagingDirector,

ThomasGuillot

ChiefExecutiveOfficer,

Mitigatingclimatechangebydecarbonizingconstruction,andmorespecificallymaterialsusedinconstructionsuchasconcreteandsteel,isacrucialandcomplexpriority.Thisreportfocusesonaddressingthechallengesinreducingemissionsfromcementandconcretebydeployinglow-carbondesigntechniquesandusinglow-carbonmaterialsatscale.

Overthepastseveralyears,ourorganizationsandothershavedonemuchworktocreatedemandforlow-carbonconcreteandconstructionfrompublicandprivatebuyers,inordertocatalyseinvestmentinconcretedecarbonization.ExamplesofthisworkincludeourpreviouspublicationssuchasGreenPublicProcurement:CatalysingtheNet-ZeroEconomyandLow-CarbonConcreteandConstruction:AReviewofGreenPublicProcurementProgrammes,whichprovideframeworksforgreenpublicprocurement;aswellasinitiativessuchastheFirstMoversCoalition,whichatCOP27inNovember2022launchedaprivate-sectorcommitmentframeworkforpurchasingnear-zerocementandconcrete.

Tobuildonourpreviouswork,andtosupportthedesignandconstructionoflower-carbonprojectsatscale,itbecameclearthatwemustalsoengagethedesignandconstructionplayersthatoperatebetweenprojectprocurementandmaterialproductionandmakecriticaldecisionsaboutconcreteuse,whichinfluenceprojects’carbonfootprint.Architecture,engineeringandconstruction(AEC)firmsmustscaletheuseoflow-carbonmaterialsanddesigntechniquesinordertoreducethecarbonfootprintofbuildingsandinfrastructure.

Toproducethisreport,weundertookaseriesofdiscussionsacrosstheAECandcementandconcreteproductioncommunities.Duringthesediscussions,companyleaderssharedtheirobjectives,strategies,reservationsandchallengesrelatedtoscalinglow-carbondesignandreducingconcreteemissions.Weencounteredarangeofcomplexconcernsandinsomecasesfrustrations,butalsoexamplesofpromisingprogressandinnovations,whichhavehelpedtomouldthisreport.

Thepurposeofthisreportistoprovideaframeworkforscalinglow-carbondesignwithconcretethatplayersacrossthevaluechaincanadopt.WhileourprimaryfocusisonthesolutionsthattheAECandcementandconcretemanufacturingindustriescanactupon,wealsorecognizethecriticalinfluenceofprojectbuyersandgovernmentsandhaveincludedtheactionstheycantaketosupportlow-carbondesign.Additionally,whilethefocusofthisreportisoncementandconcrete,manyoftheideasdescribedcanbeappliedtoreducingemissionsfromotherbuildingmaterialsandfromentireprojects.

Implementingthesesolutionswillnotbeeasybutdefiningthemisanimportantstartingpointandonethatwehopewillinspireaction.Trendsincorporatedecarbonizationcommitmentsandgreenpublicprocurementprogrammes–aswellasthegrowingpressureoncompaniestoliveuptotheirsustainabilitygoals–indicatethatlow-carbondesignandproductionoflow-carbonmaterialswillincreasinglybecomecapabilitiesthatAECfirmsandmaterialsproducerswillneedtoadopttoremaincompetitiveinthefuture.Webelievethatfirmsthatbeginthejourneyofscalinglow-carbondesignnowaremakingsmartinvestments,notonlyinthesustainabilityofourplanet,butinthesustainabilityoftheirbusinesses.

ScalingLow-CarbonDesignandConstructionwithConcrete3

Executivesummary

Theworldisinthemidstofaninfrastructureandbuildingsboom.Ineverypartoftheglobe,andespeciallysointhedevelopingworld,urbancommercialcentresandresidentialhousingareexpandingaseconomiesgrow.Atthesametime,newroadsandbridgesarebeingpavedanddesignedtoprovidelogisticschannelsformovingparts,supplies,manufacturedgoodsaswellascommuters,whileoldinfrastructureisbeingmodernized.Thisisallpotentiallygoodnewsfortheglobaleconomy,exceptoneglaringdownside:buildingsandinfrastructureareresponsibleforapproximately40%ofglobalcarbonemissionseachyear,around15gigatonnes(Gt).1

Unabated,thisnumbercouldgrowdramatically,effectivelyundercuttingdecarbonizationeffortsinothersectors.

Asubstantialshareoftheseemissionsisreleasedbeforeanassetiseverused.Theproductionofmaterialsaccountsfor15-20%ofbuildingsemissionsand50-60%ofinfrastructureemissions(seeFigure1).Amongbuildingmaterials,concreteaccountsforaround30%ofbuildingmaterialsemissions(seeFigure2)and7%ofglobalcarbonemissions.2

Yet,concretepossessesqualitiesthatmakeitubiquitousandimportantinconstruction–durability,resilience,thermalcapacity,localavailability,relativeaffordabilityandtheabilitytomeethighlyvariablefunctionalrequirements.Therefore,inordertoreducethecarbonfootprintofbuildingsandinfrastructure,itiscriticaltoexaminethemanufactureanduseofconcrete.In2021,thecementandconcreteindustrypublisheditsroadmaptonet-zeroconcreteby2050throughtheGlobalCementandConcreteAssociation,inwhichitidentifiedtheactionsandpolicyenablersnecessarytodecarbonizetheentirevaluechainofthesector.Theroadmapidentifiedthevaluableroleoflow-carbondesignandconstruction.

Thispaperexamineshowtoscalethislever.

Thepotential

ThedecisionsmadebyAECfirmsabouthowtouseconcretehaveanimpacton–andifdecidedwithintentionality,canreduce–astructure’slifetimeemissionsinseveralways.Mostimmediately,decarbonizingthecementmanufacturingprocessusingnear-term(availableby2030)technologies,specifyinglower-carbonconcreteformulations,andoptimizingthevolumeofmaterialused,canreduceproject-levelcarbonemissionsfromconcretebyupto40%(seeFigure4).Furthermore,thewayconcreteisusedinastructure’sdesigncanbeoptimizedtoimproveitsthermalefficiency,longevityandcircularity,furtherreducingitscarbonfootprint.

Theobstacles

Althoughreducingcarbonemissionsinbuildingsandinfrastructureisanimportantopportunityrequiringswiftaction,aseriesofobstaclespreventslow-carbondesignandconstructionwithconcretefrombeingdeployedatscaletoday.

Tobeginwith,measurementofcarbonemissionsacrosstheentirelifecycleofaproject,anduseofdatatoimprovedesigndecisionsandtrackprogress,isnottheindustrynorm.Thisis,inpart,becauseofthecomplexityoflifetimecarbonassessmentcalculationsandalackofavailabledatainputs.Itcanalsobeattributedtoalackofmandatesforcarbonmeasurementfromgovernments,clientsandfirms.

Fragmentationinthedesignandbuildingprocessalsostandsinthewayofachievinglower-carbonoutcomes.Differentphasesofdesignandconstructionarehandledbydifferentteamsandfirms,oftenwithminimalcoordination,limitingvisibilityintosupplychainsandimpedingexchangesofinformationandideas.

Addingtothesechallenges,low-carbondesigntechniquesandproductsarenotalwaysalignedwithindustrynormsanddocumentedcodesandstandards,makingitriskyforfirmstodeploythem.

Perhapsmostimportantly,manyclients,publicandprivate,arenotprioritizingcarbonreduction(whichcansometimesincreasematerialandprojectcosts)intheirprocurementdecisions.ThisnotonlymakesitdifficultforAECfirmstoprioritizelow-carbondesign,butcreatesuncertaintyamongcementmanufacturersaboutthedemandforlow-carbonproducts,discouragingthemfrominvestingindecarbonizingtheirproductionprocesses.Thisadverselyaffectstheeconomicsandsupplyoflow-emissionscementandconcreteproducts,creatingcircularchallengesandmakingdesignershesitanttospecifythem.

Thesolution

Thisreportoffersaseven-partframeworkforovercomingthechallengesandconcernsthathavestymiedlow-carbondesignofbuildingsandinfrastructureprojectswithconcrete.EnactingthisframeworkrequiresactionandsupportfromAECfirms,cementandconcretemanufacturers,projectbuyersandinvestors,andgovernments.

ScalingLow-CarbonDesignandConstructionwithConcrete4

1.Adoptconsistentlife-cycleemissionsmeasurement

AECfirmsmustconductproject-level,life-cyclecarbonassessments,anddosoconsistently,inordertoinformresponsibledesigndecisionsandcreateaccountability.Thecementandconcreteindustry,onitspart,mustmorefrequentlyprovidedetailedenvironmentalproductdeclarations(EPDs).

2.Increasecollaborationacrossthevaluechain

EnhancedcommunicationduringtheprojectdesignprocessbetweenAECfirmsandconcretemanufacturerscanimprovesupplychainvisibilityandfacilitatelower-carbonprojectoutcomes.

3.Reduceriskthroughpiloting,dataandengagement

Whenstandards,codesandindustrynormsworkagainstreducingcarbonemissionsonbuildingsandinfrastructureprojects,AECfirmsandcementandconcreteproducersmustbewillingtopushforchangebyparticipatingindialogueswithclients,academiaandindustrybodiestorunpilots,investinresearch,gatherdurabilitydataandupdatestandards.

4.Evolveoperatingmodelswithextensiveleadershipsupport

AECfirmsmusthaveclearmandatesfromthehighestlevelsofleadershiptoprioritizelow-carbondesign,sothattheycaneffectivelyupskillandenableteamstoachievelower-carbonoutcomes.

5.Signaldemandandscalesupply

Bycommittingtospecifyanddesignforanincreasedvolumeoflow-carbonmaterialsandprojects,AECfirmscanhelpmakethebusinesscaseforcementandconcretemanufacturerstoinvestintheplantupgradesneededtoproducethesematerialsatscale,improvingtheireconomicsandavailability.

6.Prioritizecarbonreductioninprocurement

Projectbuyers,bothpublicandprivate,canhavemeaningfulinfluenceindrivingtheAECandcementmanufacturingindustriestoact,byrequiringdisclosureofprojectandmaterialsemissionsandprioritizingcarbonreductioninthepartnerselectionanddesignprocess.AlongsidedemandsignalsfromAECfirms,thiscanalsohelpdrivethenecessaryinvestmentsintechnologyandmanufacturing.

7.Establishsupportivepublicpolicy

Governmentscansupporttheabovestepsandaccelerateprogressthrougharangeofpolicyactionsincludingregulation,incentivesandfunding,andbyprovidingleadershiptoaddresskeyindustrychallenges.

Giventheurgencyofreducingemissionsfrombuildingsandinfrastructure,andthepotentialoflow-carbondesignandconstructionusingconcrete,allstakeholders–AECfirms,cementandconcretemanufacturers,publicandprivatebuyersofconstructionprojectsandgovernments–musttaketheseactionsearnestlyandspeedily.

ScalingLow-CarbonDesignandConstructionwithConcrete5

1

Introduction

Scalinglow-carbondesignwithconcrete:Apathtonet-zeroconstruction.

throughenergyconsumption,repairs,maintenanceandattheendofitslife,fromdemolitionandwaste.Thedesigndecisionsmadebyprojectbuyersandinvestors,architectsandengineersbeforeconstructionbegins,andthechoicesthatcontractorsmakethroughoutthebuildingprocessaboutwhichmaterialstouseandhowtousethem,haveameaningfulimpactonthetotallife-cycleemissionsofanasset.

Buildingsandinfrastructureareresponsible

forapproximately40%oftheworld’scarbon

emissionseachyear.Ameaningfulshareofthese

emissionsisreleasedbeforeanassetiseverused

–throughtheproductionofbuildingmaterials(an

estimated15-20%forbuildingsand50-60%for

infrastructure,althoughitcanvarywidelybyproject

andgeography)andconstructionactivities.The

remainderareemittedduringtheuseofanasset

FIGURE1Thebuiltenvironmentisresponsibleforaround40%ofglobalemissions

acrossthefullprojectlife-cycle

Builtenvironmentlifecycle

PrimaryAECandcementindustryengagement

~40%oftotalglobalCO2

75-80%

2

Negligible,but

%emissions

ofGtCO2

50-60%

2

Sources:IEA,“2020EnergyTechnologyPerspectives”;IEA,“TrackingReport-Buildings”;BCGanalysis.

Note:Life-cycleanalysisbasedonEuropeanStandardsEN-15978–includesmaterials,construction,operationandend-of-lifeemissions;excludescreditofmaterialreuseandrecycling.

influences

emissions

across

valuechain

11-13GtCO

Buildings

Infrastructure

20-30%

15-20%

10-15%

5-10%

2-3GtCO

<5%

<5%

emissions(37GtCO2)AECandcementindustryinfluence

~15GtCO2Architecture,MaterialBuildingof

TotalbuiientCO2sfproi

Endoflife

StageDesignProductConstructionUse

Disassemblyand

recyclingor

disposalofwaste

Theroleofcementandconcrete

Concreteandcement(anessentialmaterialinconcrete)arethemostconsumedhuman-maderesourcesonEarth,responsibleforapproximately7%ofglobalcarbonemissionsand30%ofmaterialemissionsforbuildings.Thecentralityofconcreteandcementaffectsthecarbonfootprintofbuildingsandinfrastructureintwocrucialways:directlythroughtheirowncarbonemissionsgeneratedduringmanufacturingandconstruction,andindirectlythroughtheirpositivecontributiontothebuiltproject’senergyefficiency,durabilityandlongevity.

Globaldemandforcementisincreasing,andintheabsenceofanyactiontorespondtocallsfornetzeroemissions,itisforecasttogrowby20%from2020to2030.3Manyofconcrete’spropertiesincludingitsstrength,durability,fireresistance,circularity,availability,resilience,thermalpropertiesandaffordabilitymakeitindispensableforcriticalinfrastructureandbuildings,whichultimatelyimpactthehealth,safetyandqualityoflifeofbillionsofpeople.Therefore,inordertoreducetheemissionsofbuildingsandinfrastructurewhilemeetingsocietalneeds,itisimperativetoexaminetheuseofconcrete,andwaystoreducethecarbonemissionsrelatedtoit.

ScalingLow-CarbonDesignandConstructionwithConcrete6

FIGURE2Concreteisresponsibleforapproximately30%ofmaterialsemissionsforbuildings

Buildingsandshareofmaterials-relatedemissions

25%

Steel

10%

Chemicals

andplastics

23%

Other

buildingmaterials

12%

Aluminium

30%

Concrete

Source:BCGanalysis.

Theroleofdesign

Alongwithmaterialsproducersthatsupplythecement,concreteandothermaterialsusedinconstruction,AECfirmscansignificantlyinfluenceaproject’scarbonemissions.Thechoicesthesefirmsmakeintheinitialstagesofaprojectdeterminethematerialsandconstructiontechniquesused,theenergyconsumption,repairsandmaintenanceduringoperation,andtheresilience,longevity,circularityandrecyclabilityattheendoflife.Thesefactorsultimatelydetermineaproject’stotalcarbonemissionsovermanyyears.Thesedesigndecisionsareofcoursealsoinfluencedbyprojectbuyers(publicandprivate),whosetprojectprioritiesandbudgets,andbygovernmentsthatissuebuildingandconstructionregulations.

Bysettingandworkingtowardsagoaltominimizecarbonemissionsfromtheverybeginningofaproject,projectbuyers,AECfirms,andcementandconcreteproducerscancollaborateto

reducecarbonemissionsacrossthebuildingandinfrastructurelifecycle.Thereareobstaclestodoingthisandchallengestoaddress,butthisisahugeopportunitythatcouldmakeacriticaldifferenceinreachingthegoaloflimitingtheglobalaveragetemperatureincreaseto1.5°Cabovepre-industriallevels.

ScalingLow-CarbonDesignandConstructionwithConcrete7

FIGURE3Anillustrativeviewofthebuildingsandinfrastructurevaluechain

Industry

Designsandbuildsprojects

Cementandconcreteproducer

Manufacturesanddeliversmaterials

Engineeringfirm

Designsstructuralsystemandspecifiesmaterials

Constructionfirm

Procuresmaterials,

schedulesprojectsand

constructsstructure

Designsaccordingtoclientneedsandgovernment

regulations

Architecturefirm

Client

Definesprojectrequirementsandfunctionalandaestheticneeds

Government

Regulatesbuildingsandconstruction

Source:BCGanalysis.

accordinglybeprioritizedbyAECfirms,cementandconcreteproducers,projectbuyers,investorsandgovernments.

Toscalelow-carbonpracticesintheindustry,

low-carbondesignandconstructionmustbe

recognizedasacriticalenablerforreducing

thecarbonfootprintofbuildings,andmust

ScalingLow-CarbonDesignandConstructionwithConcrete8

2

~16%

100%

Furtheractionsareneededtoreachnetzeroby2050

Thepotentialoflow-carbondesignandconstruction

Large-scaledeploymentoflow-carbondesigntacticsandtheuseofexistingandupcomingmanufacturingtechnologiescanmeaningfullyreducethecarbonfootprintofconstructionprojects.

Thetotalconcreteemissionsinaprojectcanbereducedbyupto40%by2030(seeFigure4)byusingexistingorupcomingtechnologyinthemanufacturingprocess,specifyingtheuseoflow-carbonconcreteproducts,andoptimizing

thevolumeofmaterialsused.Additionally,other

techniquesrelatedtotheconstruction,useand

end-of-lifestagescanfurthershrinkastructure’s

carbonfootprintoveritslifecycle.

FIGURE4

Low-carbondesigncanreducethecementandconcreteemissionsof

constructionprojectsbyupto40%inthenearterm

2030outlook

~6%

~18%

~60%

Manufacturingprocessdecarbonization

Specifyinglower-carbon

cementandconcrete

products

Optimizingvolumeofmaterial

Remainder

CementandconcreteCO2

emissions

Expected2030emissionsin

theabsenceofanyaction

MostdirectlyinfluencedbycementandconcreteproducersMostdirectlyinfluencedbyAEC

Sources:GlobalCementandConcreteAssociation,ConcreteFuture–TheGCCA2050CementandConcreteIndustryRoadmapforNetZeroConcrete,2021;InstitutionofCivilEngineers,LowCarbonConcreteRoutemap,2021;AProject-BasedComparisonBetweenReinforcedandPost-TensionedStructuresfroma

SustainabilityPerspective,2011;UniversityofWollongong,Environmentalimpactassessmentofposttensionedandreinforcedconcreteslabconstruction,2013;BCGanalysis.

ScalingLow-CarbonDesignandConstructionwithConcrete9

BOX1

highermaintenanceandearlierreplacement?Thesealternativesshouldnotbecomparedonlyoninitialcarbonimpacts,butovertheentirelifetime.

ClientsandAECfirmsmustalsoconsidertrade-offsbetweenemissionsreductiondesigntacticsandotherprojectcriteriasuchascost,projectschedulingandaesthetics.Theymustalsobethoughtfulabouthowmuchnewconstructionisundertakenwhilekeepinginmindopportunitiesforrefurbishingandrepurposingexistingstructures.

Holisticdesigndecision-making

Designersmustholisticallyassessthevariousleverstheyuse,andoverthewholeprojectlifecycle,inordertomaximizeemissionsreductionswhilemeetingprojectgoals.Forexample,designsthatmaximizeenergyefficiencymayrequiremorecarbon-intensivematerials.

Clientsanddesignersfacechoiceswhiledesigningtheservicelifeofaproject:dotheywanttodesignalong-lasting,resilientprojectwithlowmaintenance,oraprojectwithashorterlifespanthatwillneed

carbonintensityandquantityofcementcanbeoptimizedforloweremissions.Forexample,theuseofhigher-strengthconcrete,whichisoftenmorecarbonintensive,sometimesenablestheuseoflesservolume.Thesetrade-offshavetobeassessedonacase-by-casebasis.Beyondthedesignphase,efficientuseofcementandconcreteduringconstructioncanalsoreducethevolumeofmaterialusedandtheassociatedcarbonfootprint.

2.Enablingthermalefficiency

Inmanysituations,designerscanuseconcrete’shighthermalcapacity,thatis,itsabilitytostoreheat,aspartofaheatingand/orcoolingstrategytoreduceoperationalenergy.Thisisacomplexandnuancedconsiderationasdesigntacticsthatincorporatethermalefficiencydependongeography,use,environmentaldesignandotherfactors.

3.Increasingstructuralresilienceandlongevity

Giventheincreaseinextremeweathereventsduetoclimatechange,concreteisanespeciallyvaluablematerialsinceithasinherentpropertiesthatenabledesignerstodeliverlongevityandresiliencewithlittleornoextramaterials.Concrete’shighdensityandrigiditymakeitextremelydurableagainstrain,flooding,humidity,strongwinds,freezing,chemicalsandotherthreats.Therefore,concretecanbeusedtoincreasetheoveralllifespanofbuildingsandinfrastructureandminimizerepairsandmaintenance,delayingoravoidingadditionalproduct-andconstruction-stageemissions.

4.Designingfordisassembly

“Designfordisassembly”(DfD)isanapproachthatusesmodularbuildingtechniquestoallowforreusingmaterialsafterbuildingdeconstruction.TheDfDplanningprocessmakesmaterialreuseandreturnplansclearearlyinthedesignphaseinordertomaximizethereuseofelementsandavoidwasteattheendoflife.

Foursignificantlow-carbondesignleversinclude:

1.Reducingthecarbonfootprintofmaterials

Manufacturingprocessdecarbonization:

Anumberofdecarbonizationleverscan

bedeployedinthecementmanufacturing

processthatdonotaffecttheproperties

oftheendproductsotherthantheirglobal

warmingpotential(GWP,thestandardunit

ofmeasurementofcarbonemissions).

Examplesincludetheuseofalternative

fuelsandrenewableenergyandefficiency

improvements.Whilelargelybeingdeployed

asfirstoftheirkindprojects,carboncapture

andstorage(CCS)technologiesarealso

criticalproduction-sidedecarbonization

leversandareneededtofullydecarbonize

cementandconcretemanufacturing.Although

thesedecarbonizationleversfalllargelyon

manufacturerstoimplement,AECplayerscan

makespecificationsandpurchasingdecisions

basedontheGWPofmaterials.

Specificationoflower-carbonconcrete

products:Architectsandengineerstypically

specifythematerialsthatshouldbeusedinthe

projectstheydesign,sometimeswithinputfrom

constructionfirmsandmaterialsproducers.

SpecifyingconcreteproductswithlesserGWP

(whilemeetingtechnicalperformanceandsafety

requirements)canmakeasignificantdifference

inaproject’semissions.Themostcommon

productofthistypeisblendedcement,made

withsupplementarycementitiousmaterials

(SCMs),reducingthevolumeofclinkerused.

However,useofSCMsathighpercentages

typicallyreducesthestrengthgainrateof

concrete,whichcanimpactconstruction

schedules(andcosts)–anelementthat

engineersandconstructionfirmsmustbear

inmind.

Optimizationofmaterialvolume:The

overallquantityofconcreteinaprojectcan

bereducedthroughdesignchoices,suchas

thespacingandwidthofslabsandcolumns,

andtheuseofhollowspaces(mostfrequently

applicableinbuildings).Additionally,the

ScalingLow-CarbonDesignandConstructionwithConcrete10

Theframeworkdescribedinthisreportfocusesprimarilyonthefi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论