版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Incollaborationwith
BostonConsultingGroup
ScalingLow-Carbon
DesignandConstruction
withConcrete:Enabling
thePathtoNet-Zerofor
BuildingsandInfrastructure
WHITEPAPER
MARCH2023
Images:GettyImages,AdobeStock
Contents
Foreword3
Executivesummary4
1Introduction6
2Thepotentialoflow-carbondesignandconstruction9
3Obstaclestoscaling12
4Sevenstepstoscalelow-carbondesignandconstruction15
withconcrete
Conclusion22
Contributors23
Endnotes24
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontribution
toaproject,insightareaorinteraction.
Thefindings,interpretationsand
conclusionsexpressedhereinarearesult
ofacollaborativeprocessfacilitatedand
endorsedbytheWorldEconomicForum
butwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomic
Forum,northeentiretyofitsMembers,
Partnersorotherstakeholders.
©2023WorldEconomicForum.Allrights
reserved.Nopartofthispublicationmay
bereproducedortransmittedinanyform
orbyanymeans,includingphotocopying
andrecording,orbyanyinformation
storageandretrievalsystem.
ScalingLow-CarbonDesignandConstructionwithConcrete2
March2023
WorldEconomicForumGlobalCementandConcreteAssociationBostonConsultingGroup
ScalingLow-CarbonDesignandConstructionwithConcrete:
EnablingthePathtoNet-ZeroforBuildingsandInfrastructure
Foreword
MartaGuzzafame
ManagingDirectorandPartner,
JeremyJurgensManagingDirector,
ThomasGuillot
ChiefExecutiveOfficer,
Mitigatingclimatechangebydecarbonizingconstruction,andmorespecificallymaterialsusedinconstructionsuchasconcreteandsteel,isacrucialandcomplexpriority.Thisreportfocusesonaddressingthechallengesinreducingemissionsfromcementandconcretebydeployinglow-carbondesigntechniquesandusinglow-carbonmaterialsatscale.
Overthepastseveralyears,ourorganizationsandothershavedonemuchworktocreatedemandforlow-carbonconcreteandconstructionfrompublicandprivatebuyers,inordertocatalyseinvestmentinconcretedecarbonization.ExamplesofthisworkincludeourpreviouspublicationssuchasGreenPublicProcurement:CatalysingtheNet-ZeroEconomyandLow-CarbonConcreteandConstruction:AReviewofGreenPublicProcurementProgrammes,whichprovideframeworksforgreenpublicprocurement;aswellasinitiativessuchastheFirstMoversCoalition,whichatCOP27inNovember2022launchedaprivate-sectorcommitmentframeworkforpurchasingnear-zerocementandconcrete.
Tobuildonourpreviouswork,andtosupportthedesignandconstructionoflower-carbonprojectsatscale,itbecameclearthatwemustalsoengagethedesignandconstructionplayersthatoperatebetweenprojectprocurementandmaterialproductionandmakecriticaldecisionsaboutconcreteuse,whichinfluenceprojects’carbonfootprint.Architecture,engineeringandconstruction(AEC)firmsmustscaletheuseoflow-carbonmaterialsanddesigntechniquesinordertoreducethecarbonfootprintofbuildingsandinfrastructure.
Toproducethisreport,weundertookaseriesofdiscussionsacrosstheAECandcementandconcreteproductioncommunities.Duringthesediscussions,companyleaderssharedtheirobjectives,strategies,reservationsandchallengesrelatedtoscalinglow-carbondesignandreducingconcreteemissions.Weencounteredarangeofcomplexconcernsandinsomecasesfrustrations,butalsoexamplesofpromisingprogressandinnovations,whichhavehelpedtomouldthisreport.
Thepurposeofthisreportistoprovideaframeworkforscalinglow-carbondesignwithconcretethatplayersacrossthevaluechaincanadopt.WhileourprimaryfocusisonthesolutionsthattheAECandcementandconcretemanufacturingindustriescanactupon,wealsorecognizethecriticalinfluenceofprojectbuyersandgovernmentsandhaveincludedtheactionstheycantaketosupportlow-carbondesign.Additionally,whilethefocusofthisreportisoncementandconcrete,manyoftheideasdescribedcanbeappliedtoreducingemissionsfromotherbuildingmaterialsandfromentireprojects.
Implementingthesesolutionswillnotbeeasybutdefiningthemisanimportantstartingpointandonethatwehopewillinspireaction.Trendsincorporatedecarbonizationcommitmentsandgreenpublicprocurementprogrammes–aswellasthegrowingpressureoncompaniestoliveuptotheirsustainabilitygoals–indicatethatlow-carbondesignandproductionoflow-carbonmaterialswillincreasinglybecomecapabilitiesthatAECfirmsandmaterialsproducerswillneedtoadopttoremaincompetitiveinthefuture.Webelievethatfirmsthatbeginthejourneyofscalinglow-carbondesignnowaremakingsmartinvestments,notonlyinthesustainabilityofourplanet,butinthesustainabilityoftheirbusinesses.
ScalingLow-CarbonDesignandConstructionwithConcrete3
Executivesummary
Theworldisinthemidstofaninfrastructureandbuildingsboom.Ineverypartoftheglobe,andespeciallysointhedevelopingworld,urbancommercialcentresandresidentialhousingareexpandingaseconomiesgrow.Atthesametime,newroadsandbridgesarebeingpavedanddesignedtoprovidelogisticschannelsformovingparts,supplies,manufacturedgoodsaswellascommuters,whileoldinfrastructureisbeingmodernized.Thisisallpotentiallygoodnewsfortheglobaleconomy,exceptoneglaringdownside:buildingsandinfrastructureareresponsibleforapproximately40%ofglobalcarbonemissionseachyear,around15gigatonnes(Gt).1
Unabated,thisnumbercouldgrowdramatically,effectivelyundercuttingdecarbonizationeffortsinothersectors.
Asubstantialshareoftheseemissionsisreleasedbeforeanassetiseverused.Theproductionofmaterialsaccountsfor15-20%ofbuildingsemissionsand50-60%ofinfrastructureemissions(seeFigure1).Amongbuildingmaterials,concreteaccountsforaround30%ofbuildingmaterialsemissions(seeFigure2)and7%ofglobalcarbonemissions.2
Yet,concretepossessesqualitiesthatmakeitubiquitousandimportantinconstruction–durability,resilience,thermalcapacity,localavailability,relativeaffordabilityandtheabilitytomeethighlyvariablefunctionalrequirements.Therefore,inordertoreducethecarbonfootprintofbuildingsandinfrastructure,itiscriticaltoexaminethemanufactureanduseofconcrete.In2021,thecementandconcreteindustrypublisheditsroadmaptonet-zeroconcreteby2050throughtheGlobalCementandConcreteAssociation,inwhichitidentifiedtheactionsandpolicyenablersnecessarytodecarbonizetheentirevaluechainofthesector.Theroadmapidentifiedthevaluableroleoflow-carbondesignandconstruction.
Thispaperexamineshowtoscalethislever.
Thepotential
ThedecisionsmadebyAECfirmsabouthowtouseconcretehaveanimpacton–andifdecidedwithintentionality,canreduce–astructure’slifetimeemissionsinseveralways.Mostimmediately,decarbonizingthecementmanufacturingprocessusingnear-term(availableby2030)technologies,specifyinglower-carbonconcreteformulations,andoptimizingthevolumeofmaterialused,canreduceproject-levelcarbonemissionsfromconcretebyupto40%(seeFigure4).Furthermore,thewayconcreteisusedinastructure’sdesigncanbeoptimizedtoimproveitsthermalefficiency,longevityandcircularity,furtherreducingitscarbonfootprint.
Theobstacles
Althoughreducingcarbonemissionsinbuildingsandinfrastructureisanimportantopportunityrequiringswiftaction,aseriesofobstaclespreventslow-carbondesignandconstructionwithconcretefrombeingdeployedatscaletoday.
Tobeginwith,measurementofcarbonemissionsacrosstheentirelifecycleofaproject,anduseofdatatoimprovedesigndecisionsandtrackprogress,isnottheindustrynorm.Thisis,inpart,becauseofthecomplexityoflifetimecarbonassessmentcalculationsandalackofavailabledatainputs.Itcanalsobeattributedtoalackofmandatesforcarbonmeasurementfromgovernments,clientsandfirms.
Fragmentationinthedesignandbuildingprocessalsostandsinthewayofachievinglower-carbonoutcomes.Differentphasesofdesignandconstructionarehandledbydifferentteamsandfirms,oftenwithminimalcoordination,limitingvisibilityintosupplychainsandimpedingexchangesofinformationandideas.
Addingtothesechallenges,low-carbondesigntechniquesandproductsarenotalwaysalignedwithindustrynormsanddocumentedcodesandstandards,makingitriskyforfirmstodeploythem.
Perhapsmostimportantly,manyclients,publicandprivate,arenotprioritizingcarbonreduction(whichcansometimesincreasematerialandprojectcosts)intheirprocurementdecisions.ThisnotonlymakesitdifficultforAECfirmstoprioritizelow-carbondesign,butcreatesuncertaintyamongcementmanufacturersaboutthedemandforlow-carbonproducts,discouragingthemfrominvestingindecarbonizingtheirproductionprocesses.Thisadverselyaffectstheeconomicsandsupplyoflow-emissionscementandconcreteproducts,creatingcircularchallengesandmakingdesignershesitanttospecifythem.
Thesolution
Thisreportoffersaseven-partframeworkforovercomingthechallengesandconcernsthathavestymiedlow-carbondesignofbuildingsandinfrastructureprojectswithconcrete.EnactingthisframeworkrequiresactionandsupportfromAECfirms,cementandconcretemanufacturers,projectbuyersandinvestors,andgovernments.
ScalingLow-CarbonDesignandConstructionwithConcrete4
1.Adoptconsistentlife-cycleemissionsmeasurement
AECfirmsmustconductproject-level,life-cyclecarbonassessments,anddosoconsistently,inordertoinformresponsibledesigndecisionsandcreateaccountability.Thecementandconcreteindustry,onitspart,mustmorefrequentlyprovidedetailedenvironmentalproductdeclarations(EPDs).
2.Increasecollaborationacrossthevaluechain
EnhancedcommunicationduringtheprojectdesignprocessbetweenAECfirmsandconcretemanufacturerscanimprovesupplychainvisibilityandfacilitatelower-carbonprojectoutcomes.
3.Reduceriskthroughpiloting,dataandengagement
Whenstandards,codesandindustrynormsworkagainstreducingcarbonemissionsonbuildingsandinfrastructureprojects,AECfirmsandcementandconcreteproducersmustbewillingtopushforchangebyparticipatingindialogueswithclients,academiaandindustrybodiestorunpilots,investinresearch,gatherdurabilitydataandupdatestandards.
4.Evolveoperatingmodelswithextensiveleadershipsupport
AECfirmsmusthaveclearmandatesfromthehighestlevelsofleadershiptoprioritizelow-carbondesign,sothattheycaneffectivelyupskillandenableteamstoachievelower-carbonoutcomes.
5.Signaldemandandscalesupply
Bycommittingtospecifyanddesignforanincreasedvolumeoflow-carbonmaterialsandprojects,AECfirmscanhelpmakethebusinesscaseforcementandconcretemanufacturerstoinvestintheplantupgradesneededtoproducethesematerialsatscale,improvingtheireconomicsandavailability.
6.Prioritizecarbonreductioninprocurement
Projectbuyers,bothpublicandprivate,canhavemeaningfulinfluenceindrivingtheAECandcementmanufacturingindustriestoact,byrequiringdisclosureofprojectandmaterialsemissionsandprioritizingcarbonreductioninthepartnerselectionanddesignprocess.AlongsidedemandsignalsfromAECfirms,thiscanalsohelpdrivethenecessaryinvestmentsintechnologyandmanufacturing.
7.Establishsupportivepublicpolicy
Governmentscansupporttheabovestepsandaccelerateprogressthrougharangeofpolicyactionsincludingregulation,incentivesandfunding,andbyprovidingleadershiptoaddresskeyindustrychallenges.
Giventheurgencyofreducingemissionsfrombuildingsandinfrastructure,andthepotentialoflow-carbondesignandconstructionusingconcrete,allstakeholders–AECfirms,cementandconcretemanufacturers,publicandprivatebuyersofconstructionprojectsandgovernments–musttaketheseactionsearnestlyandspeedily.
ScalingLow-CarbonDesignandConstructionwithConcrete5
1
Introduction
Scalinglow-carbondesignwithconcrete:Apathtonet-zeroconstruction.
throughenergyconsumption,repairs,maintenanceandattheendofitslife,fromdemolitionandwaste.Thedesigndecisionsmadebyprojectbuyersandinvestors,architectsandengineersbeforeconstructionbegins,andthechoicesthatcontractorsmakethroughoutthebuildingprocessaboutwhichmaterialstouseandhowtousethem,haveameaningfulimpactonthetotallife-cycleemissionsofanasset.
Buildingsandinfrastructureareresponsible
forapproximately40%oftheworld’scarbon
emissionseachyear.Ameaningfulshareofthese
emissionsisreleasedbeforeanassetiseverused
–throughtheproductionofbuildingmaterials(an
estimated15-20%forbuildingsand50-60%for
infrastructure,althoughitcanvarywidelybyproject
andgeography)andconstructionactivities.The
remainderareemittedduringtheuseofanasset
FIGURE1Thebuiltenvironmentisresponsibleforaround40%ofglobalemissions
acrossthefullprojectlife-cycle
Builtenvironmentlifecycle
PrimaryAECandcementindustryengagement
~40%oftotalglobalCO2
75-80%
2
Negligible,but
%emissions
ofGtCO2
50-60%
2
Sources:IEA,“2020EnergyTechnologyPerspectives”;IEA,“TrackingReport-Buildings”;BCGanalysis.
Note:Life-cycleanalysisbasedonEuropeanStandardsEN-15978–includesmaterials,construction,operationandend-of-lifeemissions;excludescreditofmaterialreuseandrecycling.
influences
emissions
across
valuechain
11-13GtCO
Buildings
Infrastructure
20-30%
15-20%
10-15%
5-10%
2-3GtCO
<5%
<5%
emissions(37GtCO2)AECandcementindustryinfluence
~15GtCO2Architecture,MaterialBuildingof
TotalbuiientCO2sfproi
Endoflife
StageDesignProductConstructionUse
Disassemblyand
recyclingor
disposalofwaste
Theroleofcementandconcrete
Concreteandcement(anessentialmaterialinconcrete)arethemostconsumedhuman-maderesourcesonEarth,responsibleforapproximately7%ofglobalcarbonemissionsand30%ofmaterialemissionsforbuildings.Thecentralityofconcreteandcementaffectsthecarbonfootprintofbuildingsandinfrastructureintwocrucialways:directlythroughtheirowncarbonemissionsgeneratedduringmanufacturingandconstruction,andindirectlythroughtheirpositivecontributiontothebuiltproject’senergyefficiency,durabilityandlongevity.
Globaldemandforcementisincreasing,andintheabsenceofanyactiontorespondtocallsfornetzeroemissions,itisforecasttogrowby20%from2020to2030.3Manyofconcrete’spropertiesincludingitsstrength,durability,fireresistance,circularity,availability,resilience,thermalpropertiesandaffordabilitymakeitindispensableforcriticalinfrastructureandbuildings,whichultimatelyimpactthehealth,safetyandqualityoflifeofbillionsofpeople.Therefore,inordertoreducetheemissionsofbuildingsandinfrastructurewhilemeetingsocietalneeds,itisimperativetoexaminetheuseofconcrete,andwaystoreducethecarbonemissionsrelatedtoit.
ScalingLow-CarbonDesignandConstructionwithConcrete6
FIGURE2Concreteisresponsibleforapproximately30%ofmaterialsemissionsforbuildings
Buildingsandshareofmaterials-relatedemissions
25%
Steel
10%
Chemicals
andplastics
23%
Other
buildingmaterials
12%
Aluminium
30%
Concrete
Source:BCGanalysis.
Theroleofdesign
Alongwithmaterialsproducersthatsupplythecement,concreteandothermaterialsusedinconstruction,AECfirmscansignificantlyinfluenceaproject’scarbonemissions.Thechoicesthesefirmsmakeintheinitialstagesofaprojectdeterminethematerialsandconstructiontechniquesused,theenergyconsumption,repairsandmaintenanceduringoperation,andtheresilience,longevity,circularityandrecyclabilityattheendoflife.Thesefactorsultimatelydetermineaproject’stotalcarbonemissionsovermanyyears.Thesedesigndecisionsareofcoursealsoinfluencedbyprojectbuyers(publicandprivate),whosetprojectprioritiesandbudgets,andbygovernmentsthatissuebuildingandconstructionregulations.
Bysettingandworkingtowardsagoaltominimizecarbonemissionsfromtheverybeginningofaproject,projectbuyers,AECfirms,andcementandconcreteproducerscancollaborateto
reducecarbonemissionsacrossthebuildingandinfrastructurelifecycle.Thereareobstaclestodoingthisandchallengestoaddress,butthisisahugeopportunitythatcouldmakeacriticaldifferenceinreachingthegoaloflimitingtheglobalaveragetemperatureincreaseto1.5°Cabovepre-industriallevels.
ScalingLow-CarbonDesignandConstructionwithConcrete7
FIGURE3Anillustrativeviewofthebuildingsandinfrastructurevaluechain
Industry
Designsandbuildsprojects
Cementandconcreteproducer
Manufacturesanddeliversmaterials
Engineeringfirm
Designsstructuralsystemandspecifiesmaterials
Constructionfirm
Procuresmaterials,
schedulesprojectsand
constructsstructure
Designsaccordingtoclientneedsandgovernment
regulations
Architecturefirm
Client
Definesprojectrequirementsandfunctionalandaestheticneeds
Government
Regulatesbuildingsandconstruction
Source:BCGanalysis.
accordinglybeprioritizedbyAECfirms,cementandconcreteproducers,projectbuyers,investorsandgovernments.
Toscalelow-carbonpracticesintheindustry,
low-carbondesignandconstructionmustbe
recognizedasacriticalenablerforreducing
thecarbonfootprintofbuildings,andmust
ScalingLow-CarbonDesignandConstructionwithConcrete8
2
~16%
100%
Furtheractionsareneededtoreachnetzeroby2050
Thepotentialoflow-carbondesignandconstruction
Large-scaledeploymentoflow-carbondesigntacticsandtheuseofexistingandupcomingmanufacturingtechnologiescanmeaningfullyreducethecarbonfootprintofconstructionprojects.
Thetotalconcreteemissionsinaprojectcanbereducedbyupto40%by2030(seeFigure4)byusingexistingorupcomingtechnologyinthemanufacturingprocess,specifyingtheuseoflow-carbonconcreteproducts,andoptimizing
thevolumeofmaterialsused.Additionally,other
techniquesrelatedtotheconstruction,useand
end-of-lifestagescanfurthershrinkastructure’s
carbonfootprintoveritslifecycle.
FIGURE4
Low-carbondesigncanreducethecementandconcreteemissionsof
constructionprojectsbyupto40%inthenearterm
2030outlook
~6%
~18%
~60%
Manufacturingprocessdecarbonization
Specifyinglower-carbon
cementandconcrete
products
Optimizingvolumeofmaterial
Remainder
CementandconcreteCO2
emissions
Expected2030emissionsin
theabsenceofanyaction
MostdirectlyinfluencedbycementandconcreteproducersMostdirectlyinfluencedbyAEC
Sources:GlobalCementandConcreteAssociation,ConcreteFuture–TheGCCA2050CementandConcreteIndustryRoadmapforNetZeroConcrete,2021;InstitutionofCivilEngineers,LowCarbonConcreteRoutemap,2021;AProject-BasedComparisonBetweenReinforcedandPost-TensionedStructuresfroma
SustainabilityPerspective,2011;UniversityofWollongong,Environmentalimpactassessmentofposttensionedandreinforcedconcreteslabconstruction,2013;BCGanalysis.
ScalingLow-CarbonDesignandConstructionwithConcrete9
BOX1
highermaintenanceandearlierreplacement?Thesealternativesshouldnotbecomparedonlyoninitialcarbonimpacts,butovertheentirelifetime.
ClientsandAECfirmsmustalsoconsidertrade-offsbetweenemissionsreductiondesigntacticsandotherprojectcriteriasuchascost,projectschedulingandaesthetics.Theymustalsobethoughtfulabouthowmuchnewconstructionisundertakenwhilekeepinginmindopportunitiesforrefurbishingandrepurposingexistingstructures.
Holisticdesigndecision-making
Designersmustholisticallyassessthevariousleverstheyuse,andoverthewholeprojectlifecycle,inordertomaximizeemissionsreductionswhilemeetingprojectgoals.Forexample,designsthatmaximizeenergyefficiencymayrequiremorecarbon-intensivematerials.
Clientsanddesignersfacechoiceswhiledesigningtheservicelifeofaproject:dotheywanttodesignalong-lasting,resilientprojectwithlowmaintenance,oraprojectwithashorterlifespanthatwillneed
carbonintensityandquantityofcementcanbeoptimizedforloweremissions.Forexample,theuseofhigher-strengthconcrete,whichisoftenmorecarbonintensive,sometimesenablestheuseoflesservolume.Thesetrade-offshavetobeassessedonacase-by-casebasis.Beyondthedesignphase,efficientuseofcementandconcreteduringconstructioncanalsoreducethevolumeofmaterialusedandtheassociatedcarbonfootprint.
2.Enablingthermalefficiency
Inmanysituations,designerscanuseconcrete’shighthermalcapacity,thatis,itsabilitytostoreheat,aspartofaheatingand/orcoolingstrategytoreduceoperationalenergy.Thisisacomplexandnuancedconsiderationasdesigntacticsthatincorporatethermalefficiencydependongeography,use,environmentaldesignandotherfactors.
3.Increasingstructuralresilienceandlongevity
Giventheincreaseinextremeweathereventsduetoclimatechange,concreteisanespeciallyvaluablematerialsinceithasinherentpropertiesthatenabledesignerstodeliverlongevityandresiliencewithlittleornoextramaterials.Concrete’shighdensityandrigiditymakeitextremelydurableagainstrain,flooding,humidity,strongwinds,freezing,chemicalsandotherthreats.Therefore,concretecanbeusedtoincreasetheoveralllifespanofbuildingsandinfrastructureandminimizerepairsandmaintenance,delayingoravoidingadditionalproduct-andconstruction-stageemissions.
4.Designingfordisassembly
“Designfordisassembly”(DfD)isanapproachthatusesmodularbuildingtechniquestoallowforreusingmaterialsafterbuildingdeconstruction.TheDfDplanningprocessmakesmaterialreuseandreturnplansclearearlyinthedesignphaseinordertomaximizethereuseofelementsandavoidwasteattheendoflife.
Foursignificantlow-carbondesignleversinclude:
1.Reducingthecarbonfootprintofmaterials
Manufacturingprocessdecarbonization:
Anumberofdecarbonizationleverscan
bedeployedinthecementmanufacturing
processthatdonotaffecttheproperties
oftheendproductsotherthantheirglobal
warmingpotential(GWP,thestandardunit
ofmeasurementofcarbonemissions).
Examplesincludetheuseofalternative
fuelsandrenewableenergyandefficiency
improvements.Whilelargelybeingdeployed
asfirstoftheirkindprojects,carboncapture
andstorage(CCS)technologiesarealso
criticalproduction-sidedecarbonization
leversandareneededtofullydecarbonize
cementandconcretemanufacturing.Although
thesedecarbonizationleversfalllargelyon
manufacturerstoimplement,AECplayerscan
makespecificationsandpurchasingdecisions
basedontheGWPofmaterials.
Specificationoflower-carbonconcrete
products:Architectsandengineerstypically
specifythematerialsthatshouldbeusedinthe
projectstheydesign,sometimeswithinputfrom
constructionfirmsandmaterialsproducers.
SpecifyingconcreteproductswithlesserGWP
(whilemeetingtechnicalperformanceandsafety
requirements)canmakeasignificantdifference
inaproject’semissions.Themostcommon
productofthistypeisblendedcement,made
withsupplementarycementitiousmaterials
(SCMs),reducingthevolumeofclinkerused.
However,useofSCMsathighpercentages
typicallyreducesthestrengthgainrateof
concrete,whichcanimpactconstruction
schedules(andcosts)–anelementthat
engineersandconstructionfirmsmustbear
inmind.
Optimizationofmaterialvolume:The
overallquantityofconcreteinaprojectcan
bereducedthroughdesignchoices,suchas
thespacingandwidthofslabsandcolumns,
andtheuseofhollowspaces(mostfrequently
applicableinbuildings).Additionally,the
ScalingLow-CarbonDesignandConstructionwithConcrete10
Theframeworkdescribedinthisreportfocusesprimarilyonthefi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考前模拟卷A-2023年高考地理一模考前模拟卷(江苏专用)(解析版)
- 2024年房产买卖合同产权转移
- 2024年度体育赛事组织与推广合同
- 职场的心得体会(12篇万能)
- 2024年体育赛事赞助与广告授权合同
- 2024年广告围挡工程设计与安装合同
- 幼儿园听课心得体会万能模板(6篇)
- 2024年技术合同:技术开发与合作条款详解
- 2024年婚姻法律咨询合同
- 2024年教育费用分期付款协议
- 2024-2030年船用发动机行业市场现状供需分析及投资评估规划分析研究报告
- 农村自建房接受赠与协议书范文
- 2023年温州瑞安农商银行招聘考试真题
- 手术室护理病历临床病案
- 2023-2024学年江西省萍乡市八年级(上)期末物理试卷
- 房屋与市政工程第三方质量安全巡查标准
- 2024年广东省第一次普通高中学业水平合格性考试历史试卷(解析版)
- 工程项目建设程序及审批部门
- 物体打击事故应急求援措施
- 融媒体综艺节目制作学习通超星期末考试答案章节答案2024年
- 2024年中国融通集团子公司中层管理人员社会招聘高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论