四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①_第1页
四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①_第2页
四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①_第3页
四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①_第4页
四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①一.分式的混合运算(共1小题)1.(2023•甘孜州)化简:.二.分式的化简求值(共1小题)2.(2023•广元)先化简,再求值:(+)÷,其中x=+1,y=.三.解一元一次不等式组(共1小题)3.(2023•攀枝花)解不等式组:.四.一次函数的应用(共1小题)4.(2023•雅安)李叔叔批发甲、乙两种蔬菜到菜市场去卖,已知甲、乙两种蔬菜的批发价和零售价如下表所示:品名甲蔬菜乙蔬菜批发价/(元/kg)4.84零售价/(元/kg)7.25.6(1)若他批发甲、乙两种蔬菜共40kg花180元,求批发甲、乙两种蔬菜各多少千克?(列方程或方程组求解)(2)若他批发甲、乙两种蔬菜共80kg花m元,设批发甲种蔬菜nkg,求m与n的函数关系式;(3)在(2)的条件下,全部卖完蔬菜后要保证利润不低于176元,至少批发甲种蔬菜多少千克?五.反比例函数与一次函数的交点问题(共1小题)5.(2023•内江)如图,在平面直角坐标系中,一次函数y=mx+n与反比例函数的图象在第一象限内交于A(a,4)和B(4,2)两点,直线AB与x轴相交于点C,连接OA.(1)求一次函数与反比例函数的表达式;(2)当x>0时,请结合函数图象,直接写出关于x的不等式mx+n的解集;(3)过点B作BD平行于x轴,交OA于点D,求梯形OCBD的面积.六.全等三角形的判定与性质(共1小题)6.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.​七.矩形的判定与性质(共1小题)7.(2023•乐山)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.​(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.八.作图—复杂作图(共1小题)8.(2023•广元)如图,将边长为4的等边三角形纸片沿边BC上的高AD剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.九.旋转的性质(共1小题)9.(2023•德阳)将一副直角三角板DOE与AOC叠放在一起,如图1,∠O=90°,∠A=30°,∠E=45°,OD>OC.在两三角板所在平面内,将三角板DOE绕点O顺时针方向旋转α(0°<α<90°)度到D1OE1位置,使OD1∥AC,如图2.(1)求α的值;(2)如图3,继续将三角板DOE绕点O顺时针方向旋转,使点E落在AC边上点E2处,点D落在点D2处,设E2D2交OD1于点G,OE1交AC于点H,若点G是E2D2的中点,试判断四边形OHE2G的形状,并说明理由.​一十.相似三角形的应用(共1小题)10.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.一十一.解直角三角形的应用-仰角俯角问题(共1小题)11.(2023•甘孜州)“科技改变生活”,小王是一名摄影爱好者,新入手一台无人机用于航拍.在一次航拍时,数据显示,从无人机A看建筑物顶部B的仰角为45°,看底部C的俯角为60°,无人机A到该建筑物BC的水平距离AD为10米,求该建筑物BC的高度.(结果精确到0.1米;参考数据:,)一十二.列表法与树状图法(共3小题)12.(2023•雅安)某校为了调查本校学生对航空航天知识的知晓情况,开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人频率60≤x<70100.170≤x<8015b80≤x<90a0.3590≤x≤10040c请根据图表信息解答下列问题:(1)求a,b,c的值;(2)补全频数分布直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.13.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息,回答下列问题:(1)m=;(2)在扇形统计图中,“拖地”所占的圆心角度数为;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.14.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.等级周平均读书时间t(单位;小时)人数A0≤t<14B1≤t<2aC2≤t<320D3≤t<415Et≥45(1)求统计图表中a=,m=.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为.(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.一十三.分数除法的应用(共1小题)15.(2023•攀枝花)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行决赛,决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?

四川省各地市2023-中考数学真题分类汇编-03解答题(基础题)知识点分类①参考答案与试题解析一.分式的混合运算(共1小题)1.(2023•甘孜州)化简:.【答案】.【解答】解:原式=(﹣)•=•=•=.二.分式的化简求值(共1小题)2.(2023•广元)先化简,再求值:(+)÷,其中x=+1,y=.【答案】,.【解答】解:原式=(﹣)÷=•=•=,当x=+1,y=时,原式==.三.解一元一次不等式组(共1小题)3.(2023•攀枝花)解不等式组:.【答案】1≤x<2.【解答】解:由题意,,∴由①得,x<2;由②得,x≥1.∴原不等式组的解集为:1≤x<2.四.一次函数的应用(共1小题)4.(2023•雅安)李叔叔批发甲、乙两种蔬菜到菜市场去卖,已知甲、乙两种蔬菜的批发价和零售价如下表所示:品名甲蔬菜乙蔬菜批发价/(元/kg)4.84零售价/(元/kg)7.25.6(1)若他批发甲、乙两种蔬菜共40kg花180元,求批发甲、乙两种蔬菜各多少千克?(列方程或方程组求解)(2)若他批发甲、乙两种蔬菜共80kg花m元,设批发甲种蔬菜nkg,求m与n的函数关系式;(3)在(2)的条件下,全部卖完蔬菜后要保证利润不低于176元,至少批发甲种蔬菜多少千克?【答案】(1)批发甲种蔬菜25千克,批发乙种蔬菜15千克;(2)m=0.8n+320;(3)至少批发甲种蔬菜60千克.【解答】解:(1)设批发甲种蔬菜x千克,批发乙种蔬菜y千克,根据题意得,,解得,答:批发甲种蔬菜25千克,批发乙种蔬菜15千克;(2)根据题意得m=4.8n+(80﹣n)×4,整理得m=0.8n+320;(3)设全部卖完蔬菜后利润为w元,根据题意得,w=(7.2﹣4.8)n+(5.6﹣4)(80﹣n),整理得w=0.8n+128,∵要保证利润不低于176元,∴w=0.8n+128≥176,解得n≥60,∴至少批发甲种蔬菜60千克.五.反比例函数与一次函数的交点问题(共1小题)5.(2023•内江)如图,在平面直角坐标系中,一次函数y=mx+n与反比例函数的图象在第一象限内交于A(a,4)和B(4,2)两点,直线AB与x轴相交于点C,连接OA.(1)求一次函数与反比例函数的表达式;(2)当x>0时,请结合函数图象,直接写出关于x的不等式mx+n的解集;(3)过点B作BD平行于x轴,交OA于点D,求梯形OCBD的面积.【答案】(1)反比例函数为,一次函数为y=﹣x+6;(2)2≤x≤4;(3)9.【解答】解:(1)∵反比例函数图象过B(4,2),∴k=4×2=8,∴反比例函数为:,把A(a,4)代入得:,∴A(2,4),∴,解得:,∴一次函数为y=﹣x+6;(2)观察函数图象可得,当x>0时,﹣x+6≥的解集为:2≤x≤4;(3)∵A(2,4),∴直线OA的解析式为:y=2x,∵过点B(4,2)作BD平行于x轴,交OA于点D,∴D(1,2),∴BD=4﹣1=3,在y=﹣x+6中,令y=0得x=6,∴C(6,0),∴OC=6,∵,∴梯形OCBD的面积为9.六.全等三角形的判定与性质(共1小题)6.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.​【答案】见解答过程.【解答】证明:∵AC∥BD,∴∠A=∠B,∠C=∠D,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.七.矩形的判定与性质(共1小题)7.(2023•乐山)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.​(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.【答案】点C到EF的距离为.【解答】(1)证明:∵FD∥CA,BC∥DE,∴四边形ECFD为平行四边形,又∵∠C=90°,∴四边形ECFD为矩形;(2)解:过点C作CH⊥EF于H,在Rt△ECF中,CF=2,CE=4,∴EF===2,∵S△ECF=×CF•CE=×EF•CH,∴CH==,∴点C到EF的距离为.八.作图—复杂作图(共1小题)8.(2023•广元)如图,将边长为4的等边三角形纸片沿边BC上的高AD剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.【答案】(1)见解析过程;(2)如图①,对角线AB的长为4;如图②,对角线AD=2,BC=2;如图③,对角线BD=2,AC=2.【解答】解:(1)如图①以AB为对角线,如图②以AD为对角线,如图③以BD为对角线;(2)∵AB=AC=BC=4,AD⊥BC,∴BD=DC=2,∴AD=2,如图①所示:四边形ACBD是矩形,则其对角线AB的长为4;如图②所示:AD=2,连接BC,过点C作CE⊥BD于点E,则EC=2,BE=2BD=4,∴BC=2;如图③所示:过点A作AE⊥CB,交CB延长线于E,连接AC,∴BD=2,由题意可得:AE=2,EC=2BE=4,∴AC===2,九.旋转的性质(共1小题)9.(2023•德阳)将一副直角三角板DOE与AOC叠放在一起,如图1,∠O=90°,∠A=30°,∠E=45°,OD>OC.在两三角板所在平面内,将三角板DOE绕点O顺时针方向旋转α(0°<α<90°)度到D1OE1位置,使OD1∥AC,如图2.(1)求α的值;(2)如图3,继续将三角板DOE绕点O顺时针方向旋转,使点E落在AC边上点E2处,点D落在点D2处,设E2D2交OD1于点G,OE1交AC于点H,若点G是E2D2的中点,试判断四边形OHE2G的形状,并说明理由.​【答案】(1)α=30°;(2)四边形OHE2G是正方形,理由见解析过程.【解答】解:(1)∵OD1∥AC,∴∠A=∠AOD1=30°,∵将三角板DOE绕点O顺时针方向旋转α(0°<α<90°)度到三角形D1OE1位置,∴∠AOD1=α=30°;(2)四边形OHE2G是正方形,理由如下:∵∠E2OD2=90°,OD2=OE2,点G是E2D2的中点,∴E2G=OG,E2G⊥OG,∵OD1∥AC,∴∠GOH=∠AHO=90°,∠OGE2=∠CE2G=90°,∴四边形OHE2G是矩形,又∵E2G=OG,∴四边形OHE2G是正方形.一十.相似三角形的应用(共1小题)10.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.【答案】该古建筑AB的高度为36m.【解答】解:设BD=xm,则BC=BD+DG+CG=x+46﹣2+4=(x+48)m,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴△ABD∽△FED,∴,即,同理可证△ABC∽△HGC,∴,即,∴,解得x=48,经检验,x=48是原方程的解,∴=,∴AB=36m,∴该古建筑AB的高度为36m.一十一.解直角三角形的应用-仰角俯角问题(共1小题)11.(2023•甘孜州)“科技改变生活”,小王是一名摄影爱好者,新入手一台无人机用于航拍.在一次航拍时,数据显示,从无人机A看建筑物顶部B的仰角为45°,看底部C的俯角为60°,无人机A到该建筑物BC的水平距离AD为10米,求该建筑物BC的高度.(结果精确到0.1米;参考数据:,)【答案】27.3米.【解答】解:由题意知,∠BAD=45°,∠CAD=60°,AD⊥BC.∵AD⊥BC,∴∠BDA=∠ADC=90°.∴∠BAD=∠ABD=45°.∴BD=AD=10(米).在Rt△ACD中,CD=AD•tan∠CAD=AD•tan60°=10(米).∴(米).答:该建筑物BC的高度约为27.3米.一十二.列表法与树状图法(共3小题)12.(2023•雅安)某校为了调查本校学生对航空航天知识的知晓情况,开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人频率60≤x<70100.170≤x<8015b80≤x<90a0.3590≤x≤10040c请根据图表信息解答下列问题:(1)求a,b,c的值;(2)补全频数分布直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.【答案】(1)a=35,b=0.15,c=0.4;(2)详见解答;(3).【解答】解:(1)调查人数为:10÷0.1=100(人),b=15÷100=0.15,a=0.35×100=35,c=40÷100=0.4,答:a=35,b=0.15,c=0.4;(2)由各组频数补全频数分布直方图如下:(3)用树状图法表示所有等可能出现的结果如下:共有6种等可能出现的结果,其中1男1女的有4种,所以抽取的2名学生恰好为1男1女的概率是=.13.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息,回答下列问题:(1)m=8;(2)在扇形统计图中,“拖地”所占的圆心角度数为108°;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.【答案】(1)8;(2)108°;(3).【解答】解:(1)因为被调查的总人数为10÷25%=40(人),所以m=40﹣(10+12+10)=8,故答案为:8;(2)在扇形统计图中,“拖地”所占的圆心角度数为360°×=108°,故答案为:108°;(3)列表如下:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表知,共有12种等可能结果,其中所选同学中有男生的有10种结果,所以所选同学中有男生的概率为=.14.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.等级周平均读书时间t(单位;小时)人数A0≤t<14B1≤t<2aC2≤t<320D3≤t<415Et≥45(1)求统计图表中a=6,m=40.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为1120人.(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.【答案】(1)6,40;(2)1120人;(3).【解答】解:(1)∵样本容量为15÷30%=50,∴a=50﹣(4+20+15+5)=6,m%=×100%=40%,即m=40,故答案为:6,40;(2)估计该校每周读书时间至少3小时的人数为2800×=1120(人),故答案为:1120人;(3)根据题意列表如下:男1男2男3女男1﹣﹣男2男1男3男1女男1男2男1男2﹣﹣男3男2女男2男3男1男3男2男3﹣﹣女男3女男1女男2女男3女﹣﹣由表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论