




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形模型(三十一)——梯子模型【最值模型】梯子问题,指有一条线段的两个端点在坐标轴上滑动,P为AB的中点。◎结论:线段AB的两端在坐标轴上滑动,∠ABC=90°,AB的中点为Q,连接OQ,QC,当O,Q,C三点共线时,OC取得最大值。【证明】如图在Rt△AOB中,点Q是中点,∴OQ=12在Rt△ABC中,由勾股定理得CQ=QB2+CB若OC要取得最大值,则O,Q,C三点共线,即OC=OQ+QC,即OC=12AB+12AB1.(2022·河南·开封市第十三中学八年级期中)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是(
)A. B. C. D.【答案】B【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【详解】取中点,连接、、,,.在中,利用勾股定理可得.在中,根据三角形三边关系可知,当、、三点共线时,最大为.故选.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.2.(2021·全国·八年级专题练习)如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是_____.【答案】2+【分析】取AC的中点P,连接OP,BP,OB,由直角三角形斜边上的中线等于斜边的一半得到OP的长.在Rt△ABP中,由勾股定理得到BP的长.在△OBP中,根据三角形三边关系定理得到OB≤OP+BP,当O、P、B三点共线时取等号,从而得到OB的最大值.【详解】取AC的中点P,连接OP,BP,OB,则OP=AC=2.在Rt△ABP中,BP=.在△OBP中,OB≤OP+BP,当O、P、B三点共线时取等号,∴OB的最大值为.故答案为.【点睛】本题考查了直角三角形斜边上的斜边的一半和勾股定理.解题的关键是构造三角形OPB.1.(2022·广东·陆河县水唇中学八年级阶段练习)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到,那么梯子的底端在水平方向滑动了几米?【答案】(1)这个梯子的顶端距地面有24米(2)梯子的底端在水平方向滑动了8米【分析】(1)AC=25米,BC=7米,根据勾股定理即可求得的长;(2)由题意得:=20米,根据勾股定理求得,根据即可求解.(1)解:由题意得:AC=25米,BC=7米,∠ABC=90°,(米)答:这个梯子的顶端距地面有24米;(2)由题意得:=20米,(米)则:=15-7=8(米),答:梯子的底端在水平方向滑动了8米.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.2.(2021·全国·八年级专题练习)如图所示,线段的两端在坐标轴上滑动,,AB的中点为Q,连接,求证:O,Q,C三点共线时,取得最大值.【答案】见解析【分析】根据三角形三边关系和勾股定理判定即可;【详解】如图.在中,,∴.在中,由勾股定理得.∵,∴当O,Q,C三点共线,取得最大值,,即;【点睛】本题主要考查了三角形三边关系和勾股定理的应用,准确计算是解题的关键.1.(2015·江苏徐州·中考真题)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.【答案】(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值12cm.【分析】(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.【详解】解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则sin∠BAO=∴∠BAO=30°,∠ABO=60°,又∵在Rt△ACB中,∠CBA=60°,∴∠CBD=60°,∠BCD=30°,BC=AB·sin30°=6∴BD=BC·sin30°=3,CD=BC·cos30°=3,∴OD=OB+BD=9∴点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时|x|=6,OC=,故点C与点O的距离的最大值是12cm.考点:相似三角形综合题.2.在一次消防演习中,消防员架起一架25米长的云梯,斜靠在一面墙上,梯子底端C离墙20米,如图.(1)求这个梯子的顶端A距地面有多高?(2)如果消防员接到命令,要求梯子的顶端上升5米(云梯长度不变),那么云梯底部在水平方向应滑动多少米?【答案】(1)15米;(2)5米.【分析】(1)利用勾股定理可得,再代入数计算即可;(2)根据题意表示出EA长,再在直角△EDB中利用勾股定理计算出BD长,进而可得CD长.【详解】解:(1)由题意得:米,米,则(米),即这个梯子的顶端距离地面15米,
(2)由题意得:米,米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东环境保护工程职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年山西旅游职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年山西戏剧职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年宝鸡三和职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2017施工安全课件
- 2025年安徽医学高等专科学校高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宁夏财经职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年宁夏工业职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年天津城市建设管理职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 服务行业教学
- 部编版六年级语文下册期中考试卷(有答案)
- 生物-华大新高考联盟2025届高三3月教学质量测评试题+答案
- 演出经纪人资格证常见试题及答案分析
- 2024年河北建投集团招聘工作人员考试真题
- 与信仰对话 课件-2024年入团积极分子培训
- 2024《整治形式主义为基层减负若干规定》全文课件
- SYT 0452-2021 石油天然气金属管道焊接工艺评定-PDF解密
- 研学旅行PPT模板
- 新教材 人教B版高中数学必修第四册 第十一章 立体几何初步 精品教学案(知识点考点汇总)
- 10t单梁起重机安装方案
- 钢轨探伤技术及规则PPT课件
评论
0/150
提交评论