模型17 全等三角形-胖瘦模型(SSA)-解析版_第1页
模型17 全等三角形-胖瘦模型(SSA)-解析版_第2页
模型17 全等三角形-胖瘦模型(SSA)-解析版_第3页
模型17 全等三角形-胖瘦模型(SSA)-解析版_第4页
模型17 全等三角形-胖瘦模型(SSA)-解析版_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全等三角形模型(十七)——胖瘦模型(SSA)【条件】如图,AB=AC,点P在线段BC上(P不是线段BC的中点)胖瘦模型——两条边对应相等,一组角对应相等,两个角互补分析:△APB与△APC并不全等AB=AC2条边对应相等AP=AP1个角相等胖瘦模型∠B=∠C2个角互补∠APC+∠APB=180°eq\o\ac(○,巧)eq\o\ac(○,记)eq\o\ac(○,口)eq\o\ac(○,诀)变胖(加等腰)变瘦(减等腰)找中间(加减后得直角三角形)◎结论1:(变胖)如图,△ABQ≌△ACP,AP=AQ思路:取CQ=BP,△ABP≌△ACQ,AP=AQ,△ABQ≌△ACP,相当于△ABP(加了△APQ)变胖了,进而△ABQ≌△ACP◎结论2:(变瘦)如图,△ABP≌△ACQ,AP=AQ思路:取CQ=BP,△ABP≌△ACQ,AP=AQ,相当于△ACP(减了△APQ)变瘦了,进而△ABP≌△ACQ◎结论3:(找中间状态)如图,△ABM≌△ACM思路:过A作AM⊥BC,垂足为M,则△ABM≌△ACM相当于△ABP(加了△APM)变胖了,相当于△ACP(减了△APM)变瘦了胖的比瘦的多一个等腰三角形,瘦的加了一个直角三角形,胖的减了一个直角三角形eq\o\ac(○,巧)eq\o\ac(○,记)eq\o\ac(○,口)eq\o\ac(○,诀)见胖瘦,变胖加等腰,变瘦减等腰,中间状态加、减直角三角形。【总结】满足的条件为SSA.1.(2022·浙江·八年级专题练习)如图,在△ABE中,D、C分别在AE、BE上且CD=CB,AC平分∠EAB,CH⊥AB于点H.(1)求证:;(2)若AD=3,AB=8,求AH的长.【答案】(1)证明见解析(2)【分析】(1)过点作于点,先根据角平分线的性质可得,再根据定理证出,根据全等三角形的性质可得,由此即可得证;(2)过点作于点,先根据全等三角形的性质可得,设,则,,再根据定理证出,根据全等三角形的性质可得,据此建立方程,解方程即可得.(1)证明:如图,过点作于点,∵平分,,∴,在与中,,∴,,,.(2)解:如图,过点作于点,由(1)已证:,,设,则,,,在和中,,,,,解得,即的长为.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质等知识点,通过作辅助线,构造全等三角形是解题关键.2.(2022·江西吉安·八年级期末)如图,AD平分∠MAN,,,垂足分别为B,C,E为线段AB上一点,在射线AN上有一点F,并使得与全等,若,则线段AE与AF的有怎样的数量关系,并说明理由.【答案】或,理由见解析【分析】分点F在C点左侧时和点F在C点右侧时两种情况,根据全等三角形的判定与性质解答即可.【详解】解:有两种情况:或,理由:∵AD平分,,,∴,∠DCA=∠DCN=∠DBE=90°,当=3时,,此时,点F可在C点左侧,也可在C点右侧,如图,当点F可在C点左侧时,在Rt△ABD和Rt△ACD中,∵DB=BC,AD=AD,∴Rt△ABD≌Rt△ACD(HL),∴AB=AC,∴;当点F可在C点右侧时,由(1)知,AC=AB=AE+3,∴AE+6=AF,即;∴线段AE与AF的数量关系是:或.【点睛】本题考查全等三角形的判定与性质、角平分线的性质定理,利用角平分线的性质证得DB=DC是解题关键,注意分类讨论思想的运用.3.(2022·江西抚州·八年级期中)如图,已知点C是的平分线上一点,于E,B、D分别在AM、AN上,且.问:和有何数量关系?并说明理由.【答案】∠1与∠2互补,理由见解析【分析】作CF⊥AN于F,证明Rt△ACF≌Rt△ACE得到AF=AE,再证明△DFC≌△BEC,得到AF=AE,由已知条件从而证得.【详解】解:∠1与∠2互补,理由是:如图,作CF⊥AN于F,∵∠3=∠4,CE⊥AM,∴CF=CE,∠CFA=∠CEA=90°,∴Rt△ACF≌Rt△ACE(HL),∴AF=AE,∵AE=(AD+AB)=(AF-DF+AE+EB)=AE+(BE-DF),∴BE-DF=0,∴BE=DF,∴△DFC≌△BEC(SAS),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,利用角平分线性质,作辅助线得到三角形全等,并利用已知条件来求解是解题的关键.1.(2022·江苏·八年级单元测试)已知:如图,△ABC中∠BAC的平分线与BC的垂直平分线交于点D,DE⊥AB于点E,DF⊥AC的延长线于点F.(1)求证:BE=CF;(2)若AB=16,CF=2,求AC的长.【答案】(1)见解析(2)12【分析】(1)连接BD,根据垂直平分线的性质和角平分线的性质可得DE=DF,DC=DB,利用HL可证Rt△DCF≌Rt△DBE,从而证出结论;(2)利用HL可证Rt△ADF≌Rt△ADE,利用全等三角形的性质即可求解.(1)连接DB,∵点D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF,∵点D在BC的垂直平分线上,∴DB=DC,在Rt△DCF与Rt△DBE中,DE=DF,DB=DC,∴Rt△DCF≌Rt△DBE(HL),∴CF=BE;(2)∵CF=BE=2,AB=16,∴AE=AB-BE=16-2=14,在Rt△ADF与Rt△ADE中,DE=DF,AD=AD,∴Rt△ADF≌Rt△ADE(HL),∴AF=AE=14,∴AC=AF-CF=14-2=12.【点睛】此题考查的是角平分线的性质、垂直平分线的性质和全等三角形的判定及性质,掌握角平分线的性质、垂直平分线的性质和全等三角形的判定及性质是解题关键.2.(2022·江苏·八年级单元测试)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD与的位置关系是______,若,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示与之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.【答案】(1)AD⊥CB′;;(2)①∠BAC=2∠DAE,理由见解析;②BE=CD+DE,理由见解析【分析】(1)先证明∠ADC=90°,再过点A作AF⊥BC于点F,根据角平分线的性质,证明△ADC≌△AFC(HL),即可求解;(2)①∠ACB′=∠ACB=α=∠B,利用三角形内角和定理得到α=90°-∠BAC,再由∠DAE+∠ACD=90°,推出∠ACD=90°-∠DAE=α,进一步计算即可求解;②在BC上截取BG=CD,先后证明△ABG≌△ACD(SAS),△GAE≌△DAE(SAS),即可求解.(1)解:∵点E与点C重合,且∠DAE+∠ACD=90°,∴∠ADC=90°,∴AD⊥CB′;过点A作AF⊥BC于点F,∵AB=AC,∴CF=BF=BC=,∵∠ACB′=∠ACB,AF⊥BC,AD⊥CB′,∴AF=AD,∴△ADC≌△AFC(HL),∴CD=CF=,故答案为:AD⊥CB′;;(2)解:①∠BAC=2∠DAE,理由如下:设∠ACB′=∠ACB=α=∠B,∴∠ACB+∠B=180°-∠BAC,即α=90°-∠BAC,∵∠DAE+∠ACD=90°,∴∠ACD=90°-∠DAE=α,∴90°-∠BAC=90°-∠DAE,∴∠BAC=2∠DAE;②BE=CD+DE,理由如下:在BC上截取BG=CD,在△ABG和△ACD中,,∴△ABG≌△ACD(SAS),∴AG=AD,∠BAG=∠CAD,∵∠BAC=∠BAG+∠GAC,∠GAD=∠CAD+∠GAC,∴∠BAC=∠GAD,∵∠BAC=2∠DAE,∴∠GAD=2∠DAE,∴∠GAE=∠DAE,在△GAE和△DAE中,,∴△GAE≌△DAE(SAS),∴GE=DE,∴BE=BG+GC=CD+DE.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,作出合适的辅助线,构造全等三角形是解题的关键.3.(2022·吉林四平·八年级期末)如图,已知BN平分∠ABC,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)线段BF、BC、AB之间有怎样的数量关系?请直接写出你探究的结论:_____________________.【答案】(1)见解析(2)2BF=AB+BC【分析】(1)过作PD⊥AB于点D,由角平分线的性质可得PD=PF,由“HL”可证RtΔADP≌RtΔCFP,可得∠1=∠BAP,即可得结论;(2)由Rt△ADP≌Rt△CFP可得出AD=CF,PD=PF,结合PB=PB即可证出Rt△BPD≌Rt△BPF,进而得出BD=BF,再根据边与边之间的关系即可得出2BF=AB+BC.(1)证明:作PD⊥AB于点D,∵BN平分∠ABC,PF⊥BC,∴PD=PF.又∵PA=PC,∴Rt△ADP≌Rt△CFP(HL),∴∠1=∠BAP,∵∠PCB+∠1=180°,∴∠PCB+∠BAP=180°;(2)解:2BF=AB+BC.由(1)知:Rt△ADP≌Rt△CFP,PD=PF,∴AD=CF,∵BP=BP,∴Rt△BPD≌Rt△BPF(HL),∴BD=BF,∴2BF=BD+BF=AB-AD+BC+CF=AB+BC,∴2BF=AB+BC.故答案为:2BF=AB+BC.【点睛】本题考查了全等三角形的判定于性质、角平分线的性质以及邻补角,解题的关键是:(1)利用HL证明Rt△ADP≌Rt△CFP;(2)利用HL证明Rt△BPD≌Rt△BPF.1.如图,△ABC中,AD平分,且平分BC,于E,于F.(1)证明:;(2)如果,,求AE、BE的长.【答案】(1)见解析(2)AE=4,BE=1【分析】(1)连接BD、CD,先由垂直平分线性质得BD=CD,再由角平分线性质得DE=CF,然后证Rt△BED≌Rt△CFD(HL),即可得出结论;(2)证明Rt△AED≌Rt△AFD(HL),得AE=AF,则CF=AF-AC=AE-AC,又因为BE=AB-AE,由(1)知BE=CF,则AB-AE=AE-AC,代入AB、AC值即可求得AE长,继而求得BE长.(1)证明:如图,连接BD、CD,∵且平分BC,∴BD=CD,∵AD平分,于E,于F,∴DE=CF,∠DEB=∠DFC=90°,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:∵AD平分,于E,于F,∴DE=CF,∠DEB=∠DFC=90°,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∴CF=AF-AC=AE-AC,由(1)知:BE=CF,∴AB-AE=AE-AC即5-AE=AE-3,∴AE=4,∴BE=AB-AE=5-4=1,【点睛】本题考查角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,熟练掌握角平分线的性质定义和线段垂直平分线的性质定理是解题的关键.2.如图,在中,的平分线与的外角的平分线交于点,于点,,交的延长线于点.(1)若点到直线的距离为5cm,求点到直线的距离;(2)求证:点在的平分线上.【答案】(1)5cm;(2)见解析.【分析】(1)过点作于,根据角平分线的性质即可解答;(2)根据角平分线的性质得到,进而得到,根据角平分线的判定定理即可证明.(1)解:过点作于,点在的平分线,,,cm,即点到直线的距离为;(2)证明:点在的平分线,,,,同理:,,,,点在的平分线上.【点睛】本题考查了角平分线的性质与判定,熟知角平分线的性质定理和判定定理,根据题意添加辅助线是解题关键.3.如图,在四边形中,平分于F,,交的延长线于点E.(1)求证:;(2)猜想与存在的的数量关系并证明;(3)若,请用含有m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论