商务统计学(第7版)英文 课件5 Discrete Probability Distributions、6 The Normal Distribution_第1页
商务统计学(第7版)英文 课件5 Discrete Probability Distributions、6 The Normal Distribution_第2页
商务统计学(第7版)英文 课件5 Discrete Probability Distributions、6 The Normal Distribution_第3页
商务统计学(第7版)英文 课件5 Discrete Probability Distributions、6 The Normal Distribution_第4页
商务统计学(第7版)英文 课件5 Discrete Probability Distributions、6 The Normal Distribution_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DiscreteProbabilityDistributionsChapter5ObjectivesInthischapter,youlearn:

Thepropertiesofaprobabilitydistribution.Tocomputetheexpectedvalueandvarianceofaprobabilitydistribution.Tocomputeprobabilitiesfrombinomial,andPoissondistributions.Tousethebinomial,andPoissondistributionstosolvebusinessproblemsDefinitionsDiscretevariablesproduceoutcomesthatcomefromacountingprocess(e.g.numberofclassesyouaretaking).Continuousvariablesproduceoutcomesthatcomefromameasurement(e.g.yourannualsalary,oryourweight).TypesOfVariablesCh.5Ch.6Ch.5Ch.6TypesOfVariablesDiscreteVariableContinuousVariableCh.5Ch.6DiscreteVariablesCanonlyassumeacountablenumberofvaluesExamples:Rolladietwice LetXbethenumberoftimes4occurs (thenXcouldbe0,1,or2times)Tossacoin5times. LetXbethenumberofheads(thenX=0,1,2,3,4,or5)ProbabilityDistributionForADiscreteVariableAprobabilitydistributionforadiscretevariableisamutuallyexclusivelistingofallpossiblenumericaloutcomesforthatvariableandaprobabilityofoccurrenceassociatedwitheachoutcome.InterruptionsPerDayInComputerNetworkProbability00.3510.2520.2030.1040.0550.05ProbabilityDistributionsAreOftenRepresentedGraphicallyP(X)0.40.30.20.10 1 2 3 4 5 XDiscreteVariablesExpectedValue(MeasuringCenter)

ExpectedValue(ormean)ofadiscretevariable(WeightedAverage)InterruptionsPerDayInComputerNetwork(xi)ProbabilityP(X=xi)xiP(X=xi)00.35(0)(0.35)=0.0010.25(1)(0.25)=0.2520.20(2)(0.20)=0.4030.10(3)(0.10)=0.3040.05(4)(0.05)=0.2050.05(5)(0.05)=0.251.00μ=E(X)=1.40VarianceofadiscretevariableStandardDeviationofadiscretevariable where:

E(X)=ExpectedvalueofthediscretevariableX xi=theithoutcomeofX P(X=xi)=ProbabilityoftheithoccurrenceofXDiscreteVariables:

MeasuringDispersionDiscreteVariables:

MeasuringDispersion(continued)InterruptionsPerDayInComputerNetwork(xi)ProbabilityP(X=xi)[xi–E(X)]2[xi–E(X)]2P(X=xi)00.35(0–1.4)2=1.96(1.96)(0.35)=0.68610.25(1–1.4)2=0.16(0.16)(0.25)=0.04020.20(2–1.4)2=0.36(0.36)(0.20)=0.07230.10(3–1.4)2=2.56(2.56)(0.10)=0.25640.05(4–1.4)2=6.76(6.76)(0.05)=0.33850.05(5–1.4)2=12.96(12.96)(0.05)=0.648σ2=2.04,σ=1.4283ProbabilityDistributionsContinuous

ProbabilityDistributionsBinomialPoissonProbabilityDistributionsDiscrete

ProbabilityDistributionsNormalCh.5Ch.6BinomialProbabilityDistributionAfixednumberofobservations,ne.g.,15tossesofacoin;tenlightbulbstakenfromawarehouseEachobservationiscategorizedastowhetherornotthe“eventofinterest”occurrede.g.,headortailineachtossofacoin;defectiveornotdefectivelightbulbSincethesetwocategoriesaremutuallyexclusiveandcollectivelyexhaustiveWhentheprobabilityoftheeventofinterestisrepresentedasπ,thentheprobabilityoftheeventofinterestnotoccurringis1-πConstantprobabilityfortheeventofinterestoccurring(π)foreachobservationProbabilityofgettingatailisthesameeachtimewetossthecoinBinomialProbabilityDistribution(continued)ObservationsareindependentTheoutcomeofoneobservationdoesnotaffecttheoutcomeoftheotherTwosamplingmethodsdeliverindependenceInfinitepopulationwithoutreplacementFinitepopulationwithreplacementPossibleApplicationsfortheBinomialDistributionAmanufacturingplantlabelsitemsaseitherdefectiveoracceptableAfirmbiddingforcontractswilleithergetacontractornotAmarketingresearchfirmreceivessurveyresponsesof“yesIwillbuy”or“noIwillnot”NewjobapplicantseitheraccepttheofferorrejectitTheBinomialDistribution

CountingTechniquesSupposetheeventofinterestisobtainingheadsonthetossofafaircoin.Youaretotossthecointhreetimes.Inhowmanywayscanyougettwoheads?Possibleways:HHT,HTH,THH,sotherearethreewaysyoucangettingtwoheads.Thissituationisfairlysimple.Weneedtobeabletocountthenumberofwaysformorecomplicatedsituations.CountingTechniques

RuleofCombinationsThenumberofcombinationsofselectingxobjectsoutofnobjectsiswhere: n!=(n)(n-1)(n-2)...(2)(1) x!=(X)(X-1)(X-2)...(2)(1) 0!=1(bydefinition)CountingTechniques

RuleofCombinationsHowmanypossible3scoopcombinationscouldyoucreateatanicecreamparlorifyouhave31flavorstoselectfromandnoflavorcanbeusedmorethanonceinthe3scoops?Thetotalchoicesisn=31,andweselectX=3.P(X=x|n,π)=probabilityofxeventsofinterest inntrials,withtheprobabilityofan “eventofinterest”beingπ

for eachtrialx=numberof“eventsofinterest”insample,(x=0,1,2,...,n)n=samplesize(numberoftrials orobservations)

π=probabilityof“eventofinterest”P(X=x|n,π)nx!nxπ(1-π)xnx!()!=--Example:Flipacoinfourtimes,letx=#heads:n=4π=0.51-π=(1-0.5)=0.5X=0,1,2,3,4BinomialDistributionFormulaWhatistheprobabilityofonesuccessinfiveobservationsiftheprobabilityofaneventofinterestis0.1? x=1,n=5,andπ=0.1Example:

CalculatingaBinomialProbabilityTheBinomialDistribution

ExampleSupposetheprobabilityofpurchasingadefectivecomputeris0.02.Whatistheprobabilityofpurchasing2defectivecomputersinagroupof10? x=2,n=10,andπ=0.02TheBinomialDistributionShape0.2.4.6012345xP(X=x|5,0.1).2.4.6012345xP(X=x|5,0.5)0TheshapeofthebinomialdistributiondependsonthevaluesofπandnHere,n=5andπ=.1Here,n=5andπ=.5TheBinomialDistributionUsingBinomialTables(AvailableOnLine)n=10x…π=.20π=.25π=.30π=.35π=.40π=.45π=.50012345678910……………………………0.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010109876543210…π=.80π=.75π=.70π=.65π=.60π=.55π=.50xExamples:n=10,π=0.35,x=3:P(X=3|10,0.35)=0.2522n=10,π=0.75,x=8:P(X=8|10,0.75)=0.2816BinomialDistributionCharacteristicsMeanVarianceandStandardDeviationWhere n=samplesize

π=probabilityoftheeventofinterestforanytrial (1–π)=probabilityofnoeventofinterestforanytrialTheBinomialDistribution

Characteristics0.2.4.6012345xP(X=x|5,0.1).2.4.6012345xP(X=x|5,0.5)0ExamplesBothExcel&MinitabCanBeUsedToCalculateTheBinomialDistributionThePoissonDistribution

DefinitionsYouusethePoissondistributionwhenyouareinterestedinthenumberoftimesaneventoccursinagivenareaofopportunity.Anareaofopportunityisacontinuousunitorintervaloftime,volume,orsuchareainwhichmorethanoneoccurrenceofaneventcanoccur.Thenumberofscratchesinacar’spaintThenumberofmosquitobitesonapersonThenumberofcomputercrashesinadayThePoissonDistributionApplythePoissonDistributionwhen:YouwishtocountthenumberoftimesaneventoccursinagivenareaofopportunityTheprobabilitythataneventoccursinoneareaofopportunityisthesameforallareasofopportunity

ThenumberofeventsthatoccurinoneareaofopportunityisindependentofthenumberofeventsthatoccurintheotherareasofopportunityTheprobabilitythattwoormoreeventsoccurinanareaofopportunityapproacheszeroastheareaofopportunitybecomessmallerTheaveragenumberofeventsperunitis

(lambda)PoissonDistributionFormulawhere: x=numberofeventsinanareaofopportunity

=expectednumberofevents e=baseofthenaturallogarithmsystem(2.71828...)

PoissonDistributionCharacteristicsMeanVarianceandStandardDeviationwhere

=expectednumberofeventsUsingPoissonTables(AvailableOnLine)X

0.100.200.300.400.500.600.700.800.90012345670.90480.09050.00450.00020.00000.00000.00000.00000.81870.16370.01640.00110.00010.00000.00000.00000.74080.22220.03330.00330.00030.00000.00000.00000.67030.26810.05360.00720.00070.00010.00000.00000.60650.30330.07580.01260.00160.00020.00000.00000.54880.32930.09880.01980.00300.00040.00000.00000.49660.34760.12170.02840.00500.00070.00010.00000.44930.35950.14380.03830.00770.00120.00020.00000.40660.36590.16470.04940.01110.00200.00030.0000Example:FindP(X=2|=0.50)Excel&MinitabCanBeUsedForThePoissonDistributionGraphofPoissonProbabilitiesX=0.50012345670.60650.30330.07580.01260.00160.00020.00000.0000P(X=2|

=0.50)=0.0758

Graphically:=0.50PoissonDistributionShapeTheshapeofthePoissonDistributiondependsontheparameter:

=0.50

=3.00ChapterSummaryInthischapterwecovered:

Thepropertiesofaprobabilitydistribution.Tocomputetheexpectedvalueandvarianceofaprobabilitydistribution.Tocomputeprobabilitiesfrombinomial,andPoissondistributions.Tousethebinomial,andPoissondistributionstosolvebusinessproblemsTheNormalDistributionChapter6ObjectivesInthischapter,youlearn:

TocomputeprobabilitiesfromthenormaldistributionHowtousethenormaldistributiontosolvebusinessproblemsTousethenormalprobabilityplottodeterminewhetherasetofdataisapproximatelynormallydistributedContinuousProbabilityDistributionsAcontinuousvariableisavariablethatcanassumeanyvalueonacontinuum(canassumeanuncountablenumberofvalues)thicknessofanitemtimerequiredtocompleteatasktemperatureofasolutionheight,ininchesThesecanpotentiallytakeonanyvaluedependingonlyontheabilitytopreciselyandaccuratelymeasureTheNormalDistribution

‘BellShaped’

Symmetrical

Mean,MedianandMode areEqualLocationisdeterminedbythemean,μSpreadisdeterminedbythestandarddeviation,σ

Therandomvariablehasaninfinitetheoreticalrange:+

to

Mean=Median=ModeXf(X)μσTheNormalDistribution

DensityFunctionTheformulaforthenormalprobabilitydensityfunctionisWhere e=themathematicalconstantapproximatedby2.71828

π=themathematicalconstantapproximatedby3.14159

μ=thepopulationmean

σ=thepopulationstandarddeviation X=anyvalueofthecontinuousvariableByvaryingtheparametersμandσ,weobtaindifferentnormaldistributionsABCAandBhavethesamemeanbutdifferentstandarddeviations.BandChavedifferentmeansanddifferentstandarddeviations.TheNormalDistributionShapeXf(X)μσChanging

μshiftsthedistributionleftorright.Changingσincreasesordecreasesthespread.TheStandardizedNormalAnynormaldistribution(withanymeanandstandarddeviationcombination)canbetransformedintothestandardizednormal

distribution(Z)TocomputenormalprobabilitiesneedtotransformXunitsintoZunitsThestandardizednormaldistribution(Z)hasameanof0andastandarddeviationof1TranslationtotheStandardizedNormalDistributionTranslatefromXtothestandardizednormal(the“Z”distribution)bysubtractingthemeanofXanddividingbyitsstandarddeviation:TheZdistributionalwayshasmean=0andstandarddeviation=1TheStandardizedNormalProbabilityDensityFunctionTheformulaforthestandardizednormalprobabilitydensityfunctionisWhere e=themathematicalconstantapproximatedby2.71828

π=themathematicalconstantapproximatedby3.14159 Z=anyvalueofthestandardizednormaldistributionTheStandardized

NormalDistributionAlsoknownasthe“Z”distributionMeanis0StandardDeviationis1Zf(Z)01ValuesabovethemeanhavepositiveZ-values.ValuesbelowthemeanhavenegativeZ-values.ExampleIfXisdistributednormallywithmeanof$100andstandarddeviationof$50,theZvalueforX=$200

isThissaysthatX=$200istwostandarddeviations(2incrementsof$50units)abovethemeanof$100.ComparingXandZunitsNotethattheshapeofthedistributionisthesame,onlythescalehaschanged.Wecanexpresstheproblemintheoriginalunits(Xindollars)orinstandardizedunits(Z)Z$1002.00$200$X(μ=$100,σ=$50)(μ=0,σ=1)FindingNormalProbabilities

ProbabilityismeasuredbytheareaunderthecurveabXf(X)PaXb()≤≤PaXb()<<=(Notethattheprobabilityofanyindividualvalueiszero)Probabilityas

AreaUndertheCurveThetotalareaunderthecurveis1.0,andthecurveissymmetric,sohalfisabovethemean,halfisbelowf(X)Xμ0.50.5TheStandardizedNormalTableTheCumulativeStandardizedNormaltableinthetextbook(AppendixtableE.2)givestheprobabilitylessthanadesiredvalueofZ(i.e.,fromnegativeinfinitytoZ)Z02.000.9772Example:

P(Z<2.00)=0.9772TheStandardizedNormalTable

ThevaluewithinthetablegivestheprobabilityfromZ=

uptothedesiredZvalue.97722.0P(Z<2.00)=0.9772

TherowshowsthevalueofZtothefirstdecimalpoint

Thecolumn

givesthevalueofZtotheseconddecimalpoint2.0...(continued)Z0.000.010.02…0.00.1GeneralProcedureforFindingNormalProbabilities

DrawthenormalcurvefortheproblemintermsofXTranslateX-valuestoZ-valuesUsetheStandardizedNormalTableTofindP(a<X<b)whenXisdistributednormally:FindingNormalProbabilitiesLetXrepresentthetimeittakes(inseconds)todownloadanimagefilefromtheinternet.SupposeXisnormalwithameanof18.0secondsandastandarddeviationof5.0seconds.FindP(X<18.6)18.6X18.0LetXrepresentthetimeittakes,insecondstodownloadanimagefilefromtheinternet.SupposeXisnormalwithameanof18.0secondsandastandarddeviationof5.0seconds.FindP(X<18.6)Z0.120X18.618μ=18

σ=5μ

=0σ=1(continued)FindingNormalProbabilitiesP(X<18.6)P(Z<0.12)Z0.12Solution:FindingP(Z<0.12)0.5478StandardizedNormalProbabilityTable(Portion)0.00=P(Z<0.12)P(X<18.6)Z.00.010.0.5000.5040.5080.5398.54380.2.5793.5832.58710.3.6179.6217.6255.020.1.5478

FindingNormal

UpperTailProbabilitiesSupposeXisnormalwithmean18.0andstandarddeviation5.0.NowFindP(X>18.6)X18.618.0NowFindP(X>18.6)…(continued)Z0.120Z0.120.547801.0001.0-0.5478=0.4522P(X>18.6)=P(Z>0.12)=1.0-P(Z≤0.12)=1.0-0.5478=0.4522

FindingNormal

UpperTailProbabilitiesFindingaNormalProbabilityBetweenTwoValuesSupposeXisnormalwithmean18.0andstandarddeviation5.0.FindP(18<X<18.6)P(18<X<18.6)=P(0<Z<0.12)Z0.120X18.618CalculateZ-values:Z0.12Solution:FindingP(0<Z<0.12)0.04780.00=P(0<Z<0.12)P(18<X<18.6)=P(Z<0.12)–P(Z≤0)=0.5478-0.5000=0.04780.5000Z.00.010.0.5000.5040.5080.5398.54380.2.5793.5832.58710.3.6179.6217.6255.020.1.5478StandardizedNormalProbabilityTable(Portion)SupposeXisnormalwithmean18.0andstandarddeviation5.0.NowFindP(17.4<X<18)X17.418.0ProbabilitiesintheLowerTailProbabilitiesintheLowerTailNowFindP(17.4<X<18)…X17.418.0P(17.4<X<18)=P(-0.12<Z<0)=P(Z<0)–P(Z≤-0.12)=0.5000-0.4522=0.0478(continued)0.04780.4522Z-0.120TheNormaldistributionissymmetric,sothisprobabilityisthesameasP(0<Z<0.12)EmpiricalRule

μ±1σenclosesabout68.26%ofX’s

f(X)Xμμ+1σμ-1σWhatcanwesayaboutthedistributionofvaluesaroundthemean?Foranynormaldistribution:σσ68.26%TheEmpiricalRule

μ±2σ

coversabout95.44%ofX’s

μ±3σ

coversabout99.73%ofX’sxμ2σ2σxμ3σ3σ95.44%99.73%(continued)StepstofindtheXvalueforaknownprobability: 1.FindtheZvaluefortheknownprobability 2.ConverttoXunitsusingtheformula:GivenaNormalProbability

FindtheXValueFindingtheXvalueforaKnownProbabilityExample:LetXrepresentthetimeittakes(inseconds)todownloadanimagefilefromtheinternet.SupposeXisnormalwithmean18.0andstandarddeviation5.0FindXsuchthat20%ofdownloadtimesarelessthanX.X?18.00.2000Z?0(continued)FindtheZvaluefor

20%intheLowerTail20%areainthelowertailisconsistentwithaZvalueof-0.84Z.03-0.9.1762.1736.2033-0.7.2327.2296.04-0.8.2005StandardizedNormalProbabilityTable(Portion).05.1711.1977.2266…………X?18.00.2000Z-0.8401.FindtheZvaluefortheknownprobability 2.ConverttoXunitsusingtheformula:FindingtheXvalue

So20%ofthevaluesfromadistributionwithmean18.0andstandarddeviation5.0arelessthan13.80BothMinitab&ExcelCanBeUsedToFindNormalProbabilitiesFindP(X<9)whereXisnormalwithameanof7andastandarddeviationof2Excel MinitabEvaluatingNormalityNotallcontinuousdistributionsarenormalItisimportanttoevaluatehowwellthedatasetisapproximatedbyanormaldistribution.Normallydistributeddatashouldapproximatethetheoreticalnormaldistribution:Thenormaldistributionisbellshaped(symmetrical)wherethemeanisequaltothemedian.Theempiricalruleappliestothenormaldistribution.Theinterquartilerangeofanormaldistributionis1.33standarddeviations.EvaluatingNormalityComparingdatacharacteristicstotheoreticalpropertiesConstructchartsorgraphsForsmall-ormoderate-sizeddatasets,constructastem-and-leafdisplayoraboxplottocheckforsymmetryForlargedatasets,doesthehistogramorpolygonappearbell-shaped?ComputedescriptivesummarymeasuresDothemean,medianandmodehavesimilarvalues?Istheinterquartilerangeapproximately1.33σ?Istherangeapproximately6σ?(continued)EvaluatingNormalityComparingdatacharacteristicstotheoreticalpropertiesObservethedistributionofthedatasetDoapproximately2/3oftheobservationsliewithinmean±1standarddeviation?Doapproximately80%oftheobservationsliewithinmean±1.28standarddeviations?Doapproximately95%oftheobservationsliewithinmean±2standarddeviations?EvaluatenormalprobabilityplotIsthenormalprobabilityplotapproximatelylinear(i.e.astraightline)withpositiveslope?(continued)Constructing

ANormalProbabilityPlotNormalprobabilityplotArrangedataintoorderedarrayFindcorrespondingstandardizednormalquantilevalues(Z)Plotthepairsofpointswithobserveddatavalues(X)ontheverticalaxisandthestandardizednormalquantilevalues(Z)onthehorizontalaxisEvaluatetheplotforevidenceoflinearityAnormalprobabilityplotfordatafromanormaldistributionwillbeapproximatelylinear:306090-2-1012ZXTheNormalProbabilityPlot

InterpretationNormalProbabilityPlot

InterpretationLeft-SkewedRight-SkewedRectangular306090-2-1012ZX(continued)306090-2-1012ZX306090-2-1012ZXNonlinearplotsindicateadeviationfromnormalityEvaluatingNormality

AnExamp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论