版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DiscreteProbabilityDistributionsChapter5ObjectivesInthischapter,youlearn:
Thepropertiesofaprobabilitydistribution.Tocomputetheexpectedvalueandvarianceofaprobabilitydistribution.Tocomputeprobabilitiesfrombinomial,andPoissondistributions.Tousethebinomial,andPoissondistributionstosolvebusinessproblemsDefinitionsDiscretevariablesproduceoutcomesthatcomefromacountingprocess(e.g.numberofclassesyouaretaking).Continuousvariablesproduceoutcomesthatcomefromameasurement(e.g.yourannualsalary,oryourweight).TypesOfVariablesCh.5Ch.6Ch.5Ch.6TypesOfVariablesDiscreteVariableContinuousVariableCh.5Ch.6DiscreteVariablesCanonlyassumeacountablenumberofvaluesExamples:Rolladietwice LetXbethenumberoftimes4occurs (thenXcouldbe0,1,or2times)Tossacoin5times. LetXbethenumberofheads(thenX=0,1,2,3,4,or5)ProbabilityDistributionForADiscreteVariableAprobabilitydistributionforadiscretevariableisamutuallyexclusivelistingofallpossiblenumericaloutcomesforthatvariableandaprobabilityofoccurrenceassociatedwitheachoutcome.InterruptionsPerDayInComputerNetworkProbability00.3510.2520.2030.1040.0550.05ProbabilityDistributionsAreOftenRepresentedGraphicallyP(X)0.40.30.20.10 1 2 3 4 5 XDiscreteVariablesExpectedValue(MeasuringCenter)
ExpectedValue(ormean)ofadiscretevariable(WeightedAverage)InterruptionsPerDayInComputerNetwork(xi)ProbabilityP(X=xi)xiP(X=xi)00.35(0)(0.35)=0.0010.25(1)(0.25)=0.2520.20(2)(0.20)=0.4030.10(3)(0.10)=0.3040.05(4)(0.05)=0.2050.05(5)(0.05)=0.251.00μ=E(X)=1.40VarianceofadiscretevariableStandardDeviationofadiscretevariable where:
E(X)=ExpectedvalueofthediscretevariableX xi=theithoutcomeofX P(X=xi)=ProbabilityoftheithoccurrenceofXDiscreteVariables:
MeasuringDispersionDiscreteVariables:
MeasuringDispersion(continued)InterruptionsPerDayInComputerNetwork(xi)ProbabilityP(X=xi)[xi–E(X)]2[xi–E(X)]2P(X=xi)00.35(0–1.4)2=1.96(1.96)(0.35)=0.68610.25(1–1.4)2=0.16(0.16)(0.25)=0.04020.20(2–1.4)2=0.36(0.36)(0.20)=0.07230.10(3–1.4)2=2.56(2.56)(0.10)=0.25640.05(4–1.4)2=6.76(6.76)(0.05)=0.33850.05(5–1.4)2=12.96(12.96)(0.05)=0.648σ2=2.04,σ=1.4283ProbabilityDistributionsContinuous
ProbabilityDistributionsBinomialPoissonProbabilityDistributionsDiscrete
ProbabilityDistributionsNormalCh.5Ch.6BinomialProbabilityDistributionAfixednumberofobservations,ne.g.,15tossesofacoin;tenlightbulbstakenfromawarehouseEachobservationiscategorizedastowhetherornotthe“eventofinterest”occurrede.g.,headortailineachtossofacoin;defectiveornotdefectivelightbulbSincethesetwocategoriesaremutuallyexclusiveandcollectivelyexhaustiveWhentheprobabilityoftheeventofinterestisrepresentedasπ,thentheprobabilityoftheeventofinterestnotoccurringis1-πConstantprobabilityfortheeventofinterestoccurring(π)foreachobservationProbabilityofgettingatailisthesameeachtimewetossthecoinBinomialProbabilityDistribution(continued)ObservationsareindependentTheoutcomeofoneobservationdoesnotaffecttheoutcomeoftheotherTwosamplingmethodsdeliverindependenceInfinitepopulationwithoutreplacementFinitepopulationwithreplacementPossibleApplicationsfortheBinomialDistributionAmanufacturingplantlabelsitemsaseitherdefectiveoracceptableAfirmbiddingforcontractswilleithergetacontractornotAmarketingresearchfirmreceivessurveyresponsesof“yesIwillbuy”or“noIwillnot”NewjobapplicantseitheraccepttheofferorrejectitTheBinomialDistribution
CountingTechniquesSupposetheeventofinterestisobtainingheadsonthetossofafaircoin.Youaretotossthecointhreetimes.Inhowmanywayscanyougettwoheads?Possibleways:HHT,HTH,THH,sotherearethreewaysyoucangettingtwoheads.Thissituationisfairlysimple.Weneedtobeabletocountthenumberofwaysformorecomplicatedsituations.CountingTechniques
RuleofCombinationsThenumberofcombinationsofselectingxobjectsoutofnobjectsiswhere: n!=(n)(n-1)(n-2)...(2)(1) x!=(X)(X-1)(X-2)...(2)(1) 0!=1(bydefinition)CountingTechniques
RuleofCombinationsHowmanypossible3scoopcombinationscouldyoucreateatanicecreamparlorifyouhave31flavorstoselectfromandnoflavorcanbeusedmorethanonceinthe3scoops?Thetotalchoicesisn=31,andweselectX=3.P(X=x|n,π)=probabilityofxeventsofinterest inntrials,withtheprobabilityofan “eventofinterest”beingπ
for eachtrialx=numberof“eventsofinterest”insample,(x=0,1,2,...,n)n=samplesize(numberoftrials orobservations)
π=probabilityof“eventofinterest”P(X=x|n,π)nx!nxπ(1-π)xnx!()!=--Example:Flipacoinfourtimes,letx=#heads:n=4π=0.51-π=(1-0.5)=0.5X=0,1,2,3,4BinomialDistributionFormulaWhatistheprobabilityofonesuccessinfiveobservationsiftheprobabilityofaneventofinterestis0.1? x=1,n=5,andπ=0.1Example:
CalculatingaBinomialProbabilityTheBinomialDistribution
ExampleSupposetheprobabilityofpurchasingadefectivecomputeris0.02.Whatistheprobabilityofpurchasing2defectivecomputersinagroupof10? x=2,n=10,andπ=0.02TheBinomialDistributionShape0.2.4.6012345xP(X=x|5,0.1).2.4.6012345xP(X=x|5,0.5)0TheshapeofthebinomialdistributiondependsonthevaluesofπandnHere,n=5andπ=.1Here,n=5andπ=.5TheBinomialDistributionUsingBinomialTables(AvailableOnLine)n=10x…π=.20π=.25π=.30π=.35π=.40π=.45π=.50012345678910……………………………0.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010109876543210…π=.80π=.75π=.70π=.65π=.60π=.55π=.50xExamples:n=10,π=0.35,x=3:P(X=3|10,0.35)=0.2522n=10,π=0.75,x=8:P(X=8|10,0.75)=0.2816BinomialDistributionCharacteristicsMeanVarianceandStandardDeviationWhere n=samplesize
π=probabilityoftheeventofinterestforanytrial (1–π)=probabilityofnoeventofinterestforanytrialTheBinomialDistribution
Characteristics0.2.4.6012345xP(X=x|5,0.1).2.4.6012345xP(X=x|5,0.5)0ExamplesBothExcel&MinitabCanBeUsedToCalculateTheBinomialDistributionThePoissonDistribution
DefinitionsYouusethePoissondistributionwhenyouareinterestedinthenumberoftimesaneventoccursinagivenareaofopportunity.Anareaofopportunityisacontinuousunitorintervaloftime,volume,orsuchareainwhichmorethanoneoccurrenceofaneventcanoccur.Thenumberofscratchesinacar’spaintThenumberofmosquitobitesonapersonThenumberofcomputercrashesinadayThePoissonDistributionApplythePoissonDistributionwhen:YouwishtocountthenumberoftimesaneventoccursinagivenareaofopportunityTheprobabilitythataneventoccursinoneareaofopportunityisthesameforallareasofopportunity
ThenumberofeventsthatoccurinoneareaofopportunityisindependentofthenumberofeventsthatoccurintheotherareasofopportunityTheprobabilitythattwoormoreeventsoccurinanareaofopportunityapproacheszeroastheareaofopportunitybecomessmallerTheaveragenumberofeventsperunitis
(lambda)PoissonDistributionFormulawhere: x=numberofeventsinanareaofopportunity
=expectednumberofevents e=baseofthenaturallogarithmsystem(2.71828...)
PoissonDistributionCharacteristicsMeanVarianceandStandardDeviationwhere
=expectednumberofeventsUsingPoissonTables(AvailableOnLine)X
0.100.200.300.400.500.600.700.800.90012345670.90480.09050.00450.00020.00000.00000.00000.00000.81870.16370.01640.00110.00010.00000.00000.00000.74080.22220.03330.00330.00030.00000.00000.00000.67030.26810.05360.00720.00070.00010.00000.00000.60650.30330.07580.01260.00160.00020.00000.00000.54880.32930.09880.01980.00300.00040.00000.00000.49660.34760.12170.02840.00500.00070.00010.00000.44930.35950.14380.03830.00770.00120.00020.00000.40660.36590.16470.04940.01110.00200.00030.0000Example:FindP(X=2|=0.50)Excel&MinitabCanBeUsedForThePoissonDistributionGraphofPoissonProbabilitiesX=0.50012345670.60650.30330.07580.01260.00160.00020.00000.0000P(X=2|
=0.50)=0.0758
Graphically:=0.50PoissonDistributionShapeTheshapeofthePoissonDistributiondependsontheparameter:
=0.50
=3.00ChapterSummaryInthischapterwecovered:
Thepropertiesofaprobabilitydistribution.Tocomputetheexpectedvalueandvarianceofaprobabilitydistribution.Tocomputeprobabilitiesfrombinomial,andPoissondistributions.Tousethebinomial,andPoissondistributionstosolvebusinessproblemsTheNormalDistributionChapter6ObjectivesInthischapter,youlearn:
TocomputeprobabilitiesfromthenormaldistributionHowtousethenormaldistributiontosolvebusinessproblemsTousethenormalprobabilityplottodeterminewhetherasetofdataisapproximatelynormallydistributedContinuousProbabilityDistributionsAcontinuousvariableisavariablethatcanassumeanyvalueonacontinuum(canassumeanuncountablenumberofvalues)thicknessofanitemtimerequiredtocompleteatasktemperatureofasolutionheight,ininchesThesecanpotentiallytakeonanyvaluedependingonlyontheabilitytopreciselyandaccuratelymeasureTheNormalDistribution
‘BellShaped’
Symmetrical
Mean,MedianandMode areEqualLocationisdeterminedbythemean,μSpreadisdeterminedbythestandarddeviation,σ
Therandomvariablehasaninfinitetheoreticalrange:+
to
Mean=Median=ModeXf(X)μσTheNormalDistribution
DensityFunctionTheformulaforthenormalprobabilitydensityfunctionisWhere e=themathematicalconstantapproximatedby2.71828
π=themathematicalconstantapproximatedby3.14159
μ=thepopulationmean
σ=thepopulationstandarddeviation X=anyvalueofthecontinuousvariableByvaryingtheparametersμandσ,weobtaindifferentnormaldistributionsABCAandBhavethesamemeanbutdifferentstandarddeviations.BandChavedifferentmeansanddifferentstandarddeviations.TheNormalDistributionShapeXf(X)μσChanging
μshiftsthedistributionleftorright.Changingσincreasesordecreasesthespread.TheStandardizedNormalAnynormaldistribution(withanymeanandstandarddeviationcombination)canbetransformedintothestandardizednormal
distribution(Z)TocomputenormalprobabilitiesneedtotransformXunitsintoZunitsThestandardizednormaldistribution(Z)hasameanof0andastandarddeviationof1TranslationtotheStandardizedNormalDistributionTranslatefromXtothestandardizednormal(the“Z”distribution)bysubtractingthemeanofXanddividingbyitsstandarddeviation:TheZdistributionalwayshasmean=0andstandarddeviation=1TheStandardizedNormalProbabilityDensityFunctionTheformulaforthestandardizednormalprobabilitydensityfunctionisWhere e=themathematicalconstantapproximatedby2.71828
π=themathematicalconstantapproximatedby3.14159 Z=anyvalueofthestandardizednormaldistributionTheStandardized
NormalDistributionAlsoknownasthe“Z”distributionMeanis0StandardDeviationis1Zf(Z)01ValuesabovethemeanhavepositiveZ-values.ValuesbelowthemeanhavenegativeZ-values.ExampleIfXisdistributednormallywithmeanof$100andstandarddeviationof$50,theZvalueforX=$200
isThissaysthatX=$200istwostandarddeviations(2incrementsof$50units)abovethemeanof$100.ComparingXandZunitsNotethattheshapeofthedistributionisthesame,onlythescalehaschanged.Wecanexpresstheproblemintheoriginalunits(Xindollars)orinstandardizedunits(Z)Z$1002.00$200$X(μ=$100,σ=$50)(μ=0,σ=1)FindingNormalProbabilities
ProbabilityismeasuredbytheareaunderthecurveabXf(X)PaXb()≤≤PaXb()<<=(Notethattheprobabilityofanyindividualvalueiszero)Probabilityas
AreaUndertheCurveThetotalareaunderthecurveis1.0,andthecurveissymmetric,sohalfisabovethemean,halfisbelowf(X)Xμ0.50.5TheStandardizedNormalTableTheCumulativeStandardizedNormaltableinthetextbook(AppendixtableE.2)givestheprobabilitylessthanadesiredvalueofZ(i.e.,fromnegativeinfinitytoZ)Z02.000.9772Example:
P(Z<2.00)=0.9772TheStandardizedNormalTable
ThevaluewithinthetablegivestheprobabilityfromZ=
uptothedesiredZvalue.97722.0P(Z<2.00)=0.9772
TherowshowsthevalueofZtothefirstdecimalpoint
Thecolumn
givesthevalueofZtotheseconddecimalpoint2.0...(continued)Z0.000.010.02…0.00.1GeneralProcedureforFindingNormalProbabilities
DrawthenormalcurvefortheproblemintermsofXTranslateX-valuestoZ-valuesUsetheStandardizedNormalTableTofindP(a<X<b)whenXisdistributednormally:FindingNormalProbabilitiesLetXrepresentthetimeittakes(inseconds)todownloadanimagefilefromtheinternet.SupposeXisnormalwithameanof18.0secondsandastandarddeviationof5.0seconds.FindP(X<18.6)18.6X18.0LetXrepresentthetimeittakes,insecondstodownloadanimagefilefromtheinternet.SupposeXisnormalwithameanof18.0secondsandastandarddeviationof5.0seconds.FindP(X<18.6)Z0.120X18.618μ=18
σ=5μ
=0σ=1(continued)FindingNormalProbabilitiesP(X<18.6)P(Z<0.12)Z0.12Solution:FindingP(Z<0.12)0.5478StandardizedNormalProbabilityTable(Portion)0.00=P(Z<0.12)P(X<18.6)Z.00.010.0.5000.5040.5080.5398.54380.2.5793.5832.58710.3.6179.6217.6255.020.1.5478
FindingNormal
UpperTailProbabilitiesSupposeXisnormalwithmean18.0andstandarddeviation5.0.NowFindP(X>18.6)X18.618.0NowFindP(X>18.6)…(continued)Z0.120Z0.120.547801.0001.0-0.5478=0.4522P(X>18.6)=P(Z>0.12)=1.0-P(Z≤0.12)=1.0-0.5478=0.4522
FindingNormal
UpperTailProbabilitiesFindingaNormalProbabilityBetweenTwoValuesSupposeXisnormalwithmean18.0andstandarddeviation5.0.FindP(18<X<18.6)P(18<X<18.6)=P(0<Z<0.12)Z0.120X18.618CalculateZ-values:Z0.12Solution:FindingP(0<Z<0.12)0.04780.00=P(0<Z<0.12)P(18<X<18.6)=P(Z<0.12)–P(Z≤0)=0.5478-0.5000=0.04780.5000Z.00.010.0.5000.5040.5080.5398.54380.2.5793.5832.58710.3.6179.6217.6255.020.1.5478StandardizedNormalProbabilityTable(Portion)SupposeXisnormalwithmean18.0andstandarddeviation5.0.NowFindP(17.4<X<18)X17.418.0ProbabilitiesintheLowerTailProbabilitiesintheLowerTailNowFindP(17.4<X<18)…X17.418.0P(17.4<X<18)=P(-0.12<Z<0)=P(Z<0)–P(Z≤-0.12)=0.5000-0.4522=0.0478(continued)0.04780.4522Z-0.120TheNormaldistributionissymmetric,sothisprobabilityisthesameasP(0<Z<0.12)EmpiricalRule
μ±1σenclosesabout68.26%ofX’s
f(X)Xμμ+1σμ-1σWhatcanwesayaboutthedistributionofvaluesaroundthemean?Foranynormaldistribution:σσ68.26%TheEmpiricalRule
μ±2σ
coversabout95.44%ofX’s
μ±3σ
coversabout99.73%ofX’sxμ2σ2σxμ3σ3σ95.44%99.73%(continued)StepstofindtheXvalueforaknownprobability: 1.FindtheZvaluefortheknownprobability 2.ConverttoXunitsusingtheformula:GivenaNormalProbability
FindtheXValueFindingtheXvalueforaKnownProbabilityExample:LetXrepresentthetimeittakes(inseconds)todownloadanimagefilefromtheinternet.SupposeXisnormalwithmean18.0andstandarddeviation5.0FindXsuchthat20%ofdownloadtimesarelessthanX.X?18.00.2000Z?0(continued)FindtheZvaluefor
20%intheLowerTail20%areainthelowertailisconsistentwithaZvalueof-0.84Z.03-0.9.1762.1736.2033-0.7.2327.2296.04-0.8.2005StandardizedNormalProbabilityTable(Portion).05.1711.1977.2266…………X?18.00.2000Z-0.8401.FindtheZvaluefortheknownprobability 2.ConverttoXunitsusingtheformula:FindingtheXvalue
So20%ofthevaluesfromadistributionwithmean18.0andstandarddeviation5.0arelessthan13.80BothMinitab&ExcelCanBeUsedToFindNormalProbabilitiesFindP(X<9)whereXisnormalwithameanof7andastandarddeviationof2Excel MinitabEvaluatingNormalityNotallcontinuousdistributionsarenormalItisimportanttoevaluatehowwellthedatasetisapproximatedbyanormaldistribution.Normallydistributeddatashouldapproximatethetheoreticalnormaldistribution:Thenormaldistributionisbellshaped(symmetrical)wherethemeanisequaltothemedian.Theempiricalruleappliestothenormaldistribution.Theinterquartilerangeofanormaldistributionis1.33standarddeviations.EvaluatingNormalityComparingdatacharacteristicstotheoreticalpropertiesConstructchartsorgraphsForsmall-ormoderate-sizeddatasets,constructastem-and-leafdisplayoraboxplottocheckforsymmetryForlargedatasets,doesthehistogramorpolygonappearbell-shaped?ComputedescriptivesummarymeasuresDothemean,medianandmodehavesimilarvalues?Istheinterquartilerangeapproximately1.33σ?Istherangeapproximately6σ?(continued)EvaluatingNormalityComparingdatacharacteristicstotheoreticalpropertiesObservethedistributionofthedatasetDoapproximately2/3oftheobservationsliewithinmean±1standarddeviation?Doapproximately80%oftheobservationsliewithinmean±1.28standarddeviations?Doapproximately95%oftheobservationsliewithinmean±2standarddeviations?EvaluatenormalprobabilityplotIsthenormalprobabilityplotapproximatelylinear(i.e.astraightline)withpositiveslope?(continued)Constructing
ANormalProbabilityPlotNormalprobabilityplotArrangedataintoorderedarrayFindcorrespondingstandardizednormalquantilevalues(Z)Plotthepairsofpointswithobserveddatavalues(X)ontheverticalaxisandthestandardizednormalquantilevalues(Z)onthehorizontalaxisEvaluatetheplotforevidenceoflinearityAnormalprobabilityplotfordatafromanormaldistributionwillbeapproximatelylinear:306090-2-1012ZXTheNormalProbabilityPlot
InterpretationNormalProbabilityPlot
InterpretationLeft-SkewedRight-SkewedRectangular306090-2-1012ZX(continued)306090-2-1012ZX306090-2-1012ZXNonlinearplotsindicateadeviationfromnormalityEvaluatingNormality
AnExamp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度信息技术外包服务合同
- 2024年企业信息化系统集成合同
- 医药制造车间质量控制制度
- 大学春季护学岗服务方案
- 2024年建筑工程施工补充合同
- 2024-2030年中国蜜月旅游行业经营状况分析规划研究报告
- 2024-2030年中国药物凉茶行业市场深度分析及竞争格局与投资研究报告
- 2024-2030年中国胺类有机缓蚀剂行业发展态势与应用前景预测报告
- 2024-2030年中国聚乙烯蜡市场未来前景预测及发展可行性分析报告
- 高档餐厅疫情防控应急处理预案
- 农场工作制度与农民岗位职责
- 2024年山东公务员考试行测真题及解析【完美打印版】
- 田赛裁判法与规则2
- 社区心肺复苏术普及
- 冬枣植保知识培训课件
- 校园突发事件与应急管理课件
- 计算机网络技术职业生涯规划
- DR拼接技术及常规摄片注意事项
- 《股票入门》课件
- 《不为人知的间歇泉》课件
- 某购物广场公司风险分级管控体系实施指南
评论
0/150
提交评论