版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年山东省菏泽市鄄城县数学九年级第一学期开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.42、(4分)下列图形既是中心对称图形,又是轴对称图形的是()A. B. C. D.3、(4分)八边形的内角和、外角和共多少度()A. B. C. D.4、(4分)平行四边形ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为6,那么平行四边形ABCD的周长是()A.8 B.10 C.12 D.185、(4分)若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定6、(4分)已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(
)A.
B.C.
D.7、(4分)若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+或x B.-或÷ C.+或÷ D.-或x8、(4分)某青年排球队12名队员的年龄情况如下表:年龄1819202122人数1xy22其中x>y,中位数为20,则这个队队员年龄的众数是()A.3 B.4 C.19 D.20二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.10、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.11、(4分)化简:___________.12、(4分)已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.13、(4分)若x、y为实数,且满足,则x+y的值是_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.15、(8分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。16、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)(1)求的值;(2)以AB为一边,在AB的左侧作正方形,求C点坐标;(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.17、(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=22.求BC边上的高及△ABC的面积.18、(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.(1)求的值.(2)若的面积为.①求点的坐标.②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出符合条件的所有点的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式2x≥-4的解集是.20、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.21、(4分)如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.22、(4分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为.23、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,中,,是上一点,于点,是的中点,于点,与交于点,若,平分,连结,.(1)求证:;(2)求证:.(3)若,判定四边形是否为菱形,并说明理由.25、(10分)现从A,B两市场向甲、乙两地运送水果,A,B两个水果市场分别有水果35和15吨,其中甲地需要水果20吨,乙地需要水果30吨,从A到甲地运费50元/吨,到乙地30元/吨;从B到甲地运费60元/吨,到乙地45元/吨(1)设A市场向甲地运送水果x吨,请完成表:运往甲地(单位:吨)运往乙地(单位:吨)A市场xB市场(2)设总运费为W元,请写出W与x的函数关系式,写明x的取值范围;(3)怎样调运水果才能使运费最少?运费最少是多少元?26、(12分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.【详解】∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=1.故选B.本题考查了频率、频数与数据总数的关系:频数=频率×数据总数.2、D【解析】
根据中心对称图形与轴对称图形的定义依次分析各选项即可判断.【详解】A只是轴对称图形,B只是中心对称图形,C只是轴对称图形,D既是中心对称图形,又是轴对称图形,故选D.本题考查中心对称图形与轴对称图形的定义,解题的关键是知道轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】
n边形的内角和是(n−2)•180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和;任何多边形的外角和是360度,与多边形的边数无关;再把它们相加即可求解.【详解】解:八边形的内角和为(8−2)•180°=1080°;外角和为360°,1080°+360°=1440°.故选:B.本题考查了多边形内角与外角,正确记忆理解多边形的内角和定理,以及外角和定理是解决本题的关键.4、C【解析】试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.考点:平行四边形的性质.5、A【解析】
先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.6、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.7、C【解析】
分别将运算代入,根据分式的运算法则即可求出答案.【详解】综上,在“口”中添加的运算符号为或故选:C.本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8、C【解析】
先求出x+y=7,再根据x>y,由众数的定义即可求出这个队员年龄的众数.【详解】解:依题意有x+y=12−1−2−2=7,∴y=7-x∵x>y,∴x>7-x∴∵x为整数∴x≥4,∴这个队队员年龄的众数是1.故选C.本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【详解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案为:1.本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.10、﹣1【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【详解】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.故答案是:m=﹣1.考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.11、【解析】
被开方数因式分解后将能开方的数开方即可化简二次根式.【详解】,故答案为:.此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.12、1【解析】
关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.【详解】解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,(a+b)2014=(﹣1)2014=1,故答案为:1.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13、1【解析】
根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】根据题意得:,解得:,∴x+y=1,故答案是:1.本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.三、解答题(本大题共5个小题,共48分)14、(3)等腰直角三角形;(3);(3)3.【解析】试题分析:(3)判断三角形CDE和三角形CBF全等是解题的关键;(3)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.试题解析:(3)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(3)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°,∴EN="ED=BF=3",可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+3=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(3)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.考点:3.正方形性质;3.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.15、(1)见解析;(2)见解析【解析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);(2)∵△ABE≌△FCE,∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.此题考考查矩形的判定,平行四边形的性质,全等三角形的判定与性质,解题关键在于掌握各判定定理16、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.【解析】
(1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.【详解】(1)∵一次函数的图像经过点A(-1,0),∴-2+b=0,解得:b=2,∵点B(m,4)在一次函数y=2x+2上,∴4=2m+2,解得:m=1,∵B(1,4)在反比例函数图象上,∴k1=4.(2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,∵A(-1,0),B(1,4),∴AF=2,BF=4,∴∠GCB+∠CBG=90°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABF+∠CBG=90°,∴∠GCB=∠ABF,又∵BC=AB,∠AFB=∠CGB=90°,∴△CBG≌△BAF,∴BG=AF=2,CG=BF=4,∴GF=6,∵在AB的左侧作正方形ABCD,∴C点坐标为(-3,6).(3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),∵线段A1B1的中点为点E,∴E(n,2),∵点和点E同时落在反比例函数的图像上,∴k2=2n=6(-3+n)解得:n=.本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.17、2,2+23.【解析】
先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=22得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【详解】∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=22,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD=AB2∴BC=BD+CD=23+2,∴S△ABC=12BC⋅AD=12(23+2)×2=2+2此题考查勾股定理,解题关键在于求出BD的长.18、(1)4;(2)①点的坐标为.②、、【解析】
(1)利用待定系数法将A点代入,即可求函数解析式的k值;(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.【详解】(1)函数的图象经过点,(2)①如图,设AC与BD交与M,点的横坐标为,点在的图象上,点的坐标为.∵轴,轴,,.∵的面积为,...点的坐标为.②∵C(1,0)∴AC=4当以ACZ作为平行四边形的边时,BE=AC=4∴∴∴、当AC作为平行四边形的对角线时,AC中点为∴BE中点为(1,2)设E(x,y)∵点的坐标为则解得:∴综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、故答案为、、本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥-1【解析】分析:已知不等式左右两边同时除以1后,即可求出解集.解答:解:1x≥-4,两边同时除以1得:x≥-1.故答案为x≥-1.20、1【解析】
首先证明四边形ABEF是菱形,然后求出AE即可解决问题.【详解】解:连接AE,交BF于点O.∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥BE,
∵EF∥AB,
∴四边形ABEF是平行四边形,
∵AF∥BE,
∴∠AFB=∠FBE,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠ABF=∠AFB,
∴AB=AF,
∴平行四边形ABEF是菱形,连接AE交BF于O,
∴AE⊥BF,OB=OF=3,OA=OE,
在Rt△AOB中,OA==4,
∴AE=2OA=8,
∴S菱形ABEF=•AE•BF=1.故答案为1.本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.21、y=x+21【解析】
一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.【详解】解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),与x轴交于点C(-2,0),根据一次函数解析式的特点,可得出方程组,解得则此一次函数的解析式为y=x+2,△AOC的面积=|-2|×1÷2=1.则此一次函数的解析式为y=x+2,△AOC的面积为1.故答案为:y=x+2;1.本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.22、y=-x+1【解析】由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.解:设所求一次函数的解析式为y=kx+b,∵函数的图象与直线y=-x+1平行,∴k=-1,又过点(8,2),有2=-1×8+b,解得b=1,∴一次函数的解析式为y=-x+1,故答案为y=-x+1.23、.【解析】
根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.【详解】解:∵菱形ABCD中,∠ABC=120°,
∴AB=BC=CD=DA,∠A=60°,
∴AB=BC=CD=DA=BD=3+1=4,
∴∠ADB=∠ABD=60°,
由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
∴∠DFG=∠BGE,
∴△BGE∽△DFG,
∴,
设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
即:,
当时,即:x=,
当时,即:x=,
∴,
解得:y1=0舍去,y2=,
故答案为:.本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)证明见解析;(3)四边形AEGF是菱形,证明见解析.【解析】
(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(注:本小题也可以通过证明四边形ECGH为矩形得出结论)
(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,依据EC=PD,即可得出AD=AP+PD=AC+EC;
(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AEGF是平行四边形,即可得到四边形AEGF是菱形.【详解】解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖南省常德市武陵区芷兰实验学校历史班高三第二次联考语文试卷含解析
- 《证券投资与分析》课件
- 10.1《劝学》课件 2024-2025学年统编版高中语文必修上册-4
- 现代学徒制课题:中国特色学徒制发展动力机制研究(附:研究思路模板、可修改技术路线图)
- 专题06 阅读理解(单选)说明文20篇(解析版)-2024-2025学年七年级英语上学期期末名校真题进阶练(深圳专用)
- 2025届宜春市重点中学高三冲刺模拟语文试卷含解析
- 黑龙江省鸡西虎林市东方红林业局2025届高考临考冲刺语文试卷含解析
- 2025届江西省赣州市崇义中学高三适应性调研考试数学试题含解析
- 2025届陕西省渭南韩城市高三压轴卷数学试卷含解析
- 2025届福建省长乐中学高考数学全真模拟密押卷含解析
- 治疗用碘131I化钠胶囊-临床用药解读
- 2024人教版五年级上册数学期末口算题训练
- 2024外研版初中英语单词表汇总(七-九年级)中考复习必背
- 安徽省合肥市包河区2023-2024学年三年级上学期期末英语试卷
- 劳动争议调解仲裁法
- 城镇历史与遗产保护智慧树知到期末考试答案2024年
- 【培训课件】医疗机构从业人员行为规范
- 车间生产中的质量问题与质量改进
- 危岩治理施工方案
- 同等学力申硕-同等学力(社会学)笔试(2018-2023年)真题摘选含答案
- 疾病健康宣教的课件
评论
0/150
提交评论