版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年内蒙古巴彦淖尔市磴口县数学九年级第一学期开学考试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().A.6 B.7 C.8 D.92、(4分)若反比例函数的图象经过点,则该反比例函数的图象位于()A.第一、二象限 B.第二、三象限 C.第二、四象限 D.第一、三象限3、(4分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4、(4分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A. B.2 C. D.35、(4分)如图,在矩形中,,,分别在边上,.将,分别沿着翻折后得到、.若分别平分,则的长为(
)A.3 B.4 C.5 D.76、(4分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4C.5 D.67、(4分)利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角8、(4分)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.10、(4分)函数,则当函数值y=8时,自变量x的值是_____.11、(4分)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.12、(4分)如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.13、(4分)请写出一个图象经过点的一次函数的表达式:______.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:,其中x=115、(8分)如图,在平面直角坐标系xOy中,直线ykxb与x轴相交于点A,与反比例函数在第一象限内的图像相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线ykxb的表达式;(2)求证:ΔOBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.16、(8分)如图,利用两面靠墙(墙足够长),用总长度37米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD,且中间共留三个1米的小门,设篱笆BC长为x米.(1)AB=_____米.(用含x的代数式表示)(2)若矩形鸡舍ABCD面积为150平方米,求篱笆BC的长.(3)矩形鸡舍ABCD面积是否有可能达到210平方米?若有可能,求出相应x的值;若不可能,则说明理由.17、(10分)如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?18、(10分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:(1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;(2)请你补全条形统计图;(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若正比例函数y=kx的图象经过点(2,4),则k=_____.20、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.21、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.22、(4分)已知反比例函数的图象在第二、四象限,则取值范围是__________23、(4分)菱形的边长为,,则以为边的正方形的面积为__________.二、解答题(本大题共3个小题,共30分)24、(8分)七年级某班体育委员统计了全班同学60秒垫排球次数,并列出下列频数分布表:次数0≤x<1010≤x<2020≤x<3030≤x<4040≤x<5050≤x<60频数14211554(1)全班共有名同学;(2)垫排球次数x在20≤x<40范围的同学有名,占全班人数的%;(3)若使垫排球次数x在20≤x<40范围的同学到九年级毕业时占全班人数的87.12%,则八、九年级平均每年的垫排球次数增长率为多少?25、(10分)某租赁公司拥有汽车100辆.据统计,每辆车的月租金为4000元时,可全部租出.每辆车的月租金每增加100元,未租出的车将增加1辆.租出的车每辆每月的维护费为500元,未租出的车每辆每月只需维护费100元.(1)当每辆车的月租金为4600元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣除维护费)是多少万元?(2)规定每辆车月租金不能超过7200元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到40.4万元?26、(12分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E,若DE=DC=5,AE=2EM.(1)求证:ΔAED≅ΔMBA;(2)求BM的长(结果用根式表示).
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
本题直接根据勾股定理求解即可.【详解】由勾股定理的变形公式可得:另一直角边长==1.故选C.本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.2、D【解析】
首先将点坐标代入函数解析式,即可得出的值,即可判定反比例函数所处的象限.【详解】解:∵反比例函数图象经过点,∴∴∴该反比例函数图像位于第一、三象限,故答案为D.此题主要考查利用点坐标求出反比例函数解析式,即可判定其所在象限.3、C【解析】
由第二象限纵坐标大于零得出关于m的不等式,解之可得.【详解】解:由题意知m+1>0,解得m>﹣1,故选:C.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、C【解析】
证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【详解】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=DE=.故选C.本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5、B【解析】
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.根据题意得到∠GAM=∠BAE=∠EAG=30°,根据三角函数的计算得到CT,即可解决问题.【详解】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.由题意:∠BAD=90°,∠BAE=∠EAG=∠GAM,∴∠GAM=∠BAE=∠EAG=30°,∵AB=AG=2,∴AM=AG•cos30°=3,同法可得CT=3,易知四边形ABNM,四边形GHTN是矩形,∴BN=AM=3,GH=TN=BC﹣BN﹣CT=10﹣6=4,故选:B.本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6、D【解析】
过点D作DH⊥OB于点H,如图,根据角平分线的性质可得DH=DP=4,再根据三角形的面积即可求出结果.【详解】解:过点D作DH⊥OB于点H,如图,∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,∴DH=DP=4,∴△ODQ的面积=.故选:D.本题主要考查了角平分线的性质,属于基本题型,熟练掌握角平分线的性质定理是解题关键.7、B【解析】
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.8、A【解析】
解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:,故选A.二、填空题(本大题共5个小题,每小题4分,共20分)9、-3【解析】
把坐标带入解析式即可求出.【详解】y=kx+b的图象经过点P(﹣2,3),∴3=﹣2k+b,∴2k﹣b=﹣3,故答案为﹣3;此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.10、或4【解析】
把y=8直接代入函数即可求出自变量的值.【详解】把y=8直接代入函数,得:,∵,∴代入,得:x=4,所以自变量x的值为或4本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.11、1【解析】
众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【详解】解:在这一组数据中1是出现次数最多的,故众数是1;故答案为1.12、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-213、y=2x-1【解析】
可设这个一次函数解析式为:,把代入即可.【详解】设这个一次函数解析式为:,把代入得,这个一次函数解析式为:不唯一.一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.三、解答题(本大题共5个小题,共48分)14、【解析】分析:先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分,然后把x=1代入计算即可.详解:原式===,当x=1时,原式=;点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序是解答本题的关键.15、(1);;(2)证明见解析;(3).【解析】
(1)首先利用待定系数法求得反比例函数的解析式,然后求得B的坐标,则利用待定系数法即可求得直线的解析式;(2)过点B作BD⊥OC于点D,在直角△OBD和直角△OBC中,利用勾股定理求得和,然后利用勾股定理的逆定理即可证明;(3)分成Q在B的左侧和右侧两种情况讨论,当在右侧时一定不成立,当在左侧时,判断是否存在点Q时∠QCO=90°-α即可.【详解】(1)设反比例函数的解析式是y=kx,把(1,8)代入得k=8,则反比例函数表达式为,把(m,2)代入得,则B的坐标是(4,2).根据题意得:,解得:,,则直线表达式y=−2x+10;(2)过点B作BD⊥OC于点D,(图1)则D的坐标是(4,0).在y=−2x+10中,令y=0,解得x=5,则OC=5.∵在直角△OBD中,BD=2,DC=OC−OD=5−4=1,则,同理,直角△BCD中,,∴,∴△OBC是直角三角形;(3)当Q在B的右侧时一定不成立,在y=−2x+10中,令x=0,则y=10,则当Q在的左边时,(图2)tan∠ACO=tanα=2,则tan(90°−α)=.当∠QCO=90°−α时,Q的横坐标是p,则纵坐标是,tan∠QCO=tan(90°−α)=:(5−p)=即,△=25−4×16=−39<0,则Q不存在,故当Q在AB之间时,满足条件,因而2<q<4.此题考查反比例函数以及三角函数,解题关键在于结合反比例函数的图象解决问题.16、(1)40-2x(2)15米或5米(3)不可能【解析】
(1)直接由图可知AB=总长度+3-2x.(2)由题意得:(40﹣2x)x=150,解得即可.(3)由题意判断(40﹣2x)x=210是否有解即可.【详解】(1)∵中间共留三个1米的小门,∴篱笆总长要增加3米,篱笆变为40米,设篱笆BC长为x米,∴AB=40﹣2x(米)故答案为40﹣2x.(2)设篱笆BC长为x米.由题意得:(40﹣2x)x=150解得:x=15,x=5∴篱笆BC的长为:15米或5米.(3)不可能.∵假设矩形鸡舍ABCD面积是210平方米,由题意得:(40﹣2x)x=210,整理得:x2﹣20x+105=0,此方程中△<0,∴方程无解.故矩形鸡舍ABCD面积不可能达到210平方米.本题考查的知识点是一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.17、14cm1【解析】
连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【详解】解:连接AC,
∵AD=4cm,CD=3cm,∠ADC=90°,
∴AC===5(cm)
∴S△ACD=CD•AD=6(cm1).
在△ABC中,∵51+111=131即AC1+BC1=AB1,
∴△ABC为直角三角形,即∠ACB=90°,
∴S△ABC=AC•BC=30(cm1).
∴S四边形ABCD=S△ABC-S△ACD
=30-6=14(cm1).
答:四边形ABCD的面积为14cm1.本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.18、(1)19,20,144;(2)见解析;(3)480【解析】
(1)根据统计图可以求得而2016年抽调的学生数,从而可以求得a、b的值以及“每天做”对应的圆心角的度数;(2)根据统计图可以求得“有时做”、“常常做”的人数,从而可以将条形统计图补充完整;(3)根据统计图可以估计“每天做”家务的学生的人数.【详解】解:(1)由题意可得,2016年抽调的学生数为:80÷40%=200,则a=38÷200×100%=19%,∴b=1-19%-21%-40%=20%,“每天做”对应的圆心角为:360°×40%=144°,故答案为:19,20,144;(2)“有时做”的人数为:20%×200=40,“常常做”的人数为:200×21%=42,补全的条形统计图如下图所示,(3)由题意可得,“每天做”家务的学生有:1200×40%=480(人),即该校每天做家务的学生有480人.本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】20、【解析】
连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.【详解】解:连接AE,
∵DE为AB的垂直平分线,
∴AE=BE,
∵在△ABC中,∠ACB=90°,AC=3,AB=5,
由勾股定理得BC=4,
设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
由勾股定理得:x2+32=(4-x)2,
解得:x=,
故答案为:.本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.21、x≥2【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.【详解】解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.22、m>5【解析】
已知反比例函数的图象在第二、四象限,所以,解得m>5,故答案为:m>5.本题考查反比例函数的性质,掌握反比例函数的性质是解本题的关键23、【解析】
如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.【详解】解:如图,
连接AC交BD于点O,
∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,
∴△ABC是等边三角形∠ABO=30°,AO=2,
∴BO==2,∴BD=2OB=4,
∴正方形BDEF的面积为1.
故答案为1.本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、(1)50;(2)36,72;(3).【解析】
(1)由图可知所有的频数之和即为人数;(2)由图可知,把20≤x<40的两组频数相加即可,然后除以总人数即可得到答案;(3)先计算到九年级20≤x<40的人数,然后设增长率为m,列出方程,解除m即可.【详解】解:(1)全班总人数=1+4+21+15+5+4=50(人),故答案为:50.(2)垫排球次数x在20≤x<40范围的同学有:21+15=36(人);百分比为:;故答案为:36,72.(3)根据题意,设平均每年的增长率为m,则解得:(舍去),故八、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级教学计划模板汇编
- 山西大学职工计划生育证明
- XX公司2024年度人事工作计划
- 初三历史教师年终工作总结计划
- 工作计划妇产科护士来年工作计划
- 2024,年街道妇女工作计划
- 2024年关工委工作计划书
- 2024年计算机视觉企业发展策略及经营计划
- 初三生寒假学习计划安排建议
- 《健康教育与健康促》课件
- 2024变电站集中监控系统第8部分:远程智能巡视
- 2024交通银行借贷合同范本
- 人教版(2024新版)七年级上册道德与法治期末复习知识点考点提纲
- 三位数乘两位数的笔算乘法-笔算(教案)人教版四年级上册数学
- (高清版)DB61∕T 5078-2023 体育建筑工艺设计标准
- 【新课标版】2024年秋一年级上册7两件宝
- 新大象版六年级上册科学全册知识点(超全版)
- 社区矫正知识考试试题2
- 天津市河西区2024-2025学年度八年级物理上学期期末质量调查试卷
- 食堂保管员责任条款
- 口腔科护士进修汇报课件
评论
0/150
提交评论