版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市教研室2023-2024学年中考押题数学预测卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A. B.C. D.2.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是()A.14 B.-13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3.5 B.3 C.4 D.4.54.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为A.14 B.13 C.12 D.105.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.216.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A. B. C. D.7.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和438.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是()A.2 B.-2 C.4 D.-49.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含10.下列各数中,最小的数是()A.﹣4B.3C.0D.﹣2二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.12.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.13.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.14.分解因:=______________________.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.三、解答题(共8题,共72分)17.(8分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有.∴.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得=,=;(2)利用所探索的结论,找一组正整数,填空:+=(+)2;(3)若,且均为正整数,求的值.18.(8分)已知反比例函数y=kx的图象过点(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.19.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.20.(8分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.(8分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.22.(10分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.23.(12分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.该同学从5个项目中任选一个,恰好是田赛项目的概率为______;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.2、A【解析】
根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故选A.3、B【解析】
解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=BD=1.故选B.4、C【解析】
∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四边形ABCD=18,∴CD+AD=9,∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.5、A【解析】
根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
则△ABC的面积是:×AD×BC=×3×(3+4)=.
故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.6、A【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,,故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.7、A【解析】
由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.8、C【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式9、A【解析】
直接利用点与圆的位置关系进而得出答案.【详解】解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选A.【点睛】此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.10、A【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得﹣4<﹣2<0<3∴各数中,最小的数是﹣4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小二、填空题(本大题共6个小题,每小题3分,共18分)11、132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.12、5750【解析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b元,∴=20%,∴b=60,∴甲产品的成本价格60元,∴1.5kgA原料与1.5kgB原料的成本和60元,∴A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,根据题意得:,∴xn=20n﹣250,设生产甲乙产品的实际成本为W元,则有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格13、或【解析】
①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为或.14、(x-2y)(x-2y+1)【解析】
根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)15、30【解析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16、4【解析】
根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.三、解答题(共8题,共72分)17、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解析】
(1)∵,∴,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案为1,2,1,2(答案不唯一).(3)由题意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.18、(1)y=6x;(2)MB=【解析】
(1)将A(3,2)分别代入y=kx
,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3
,可得矩形OBDC的面积为12;即OC×OB=12
;进而可得m、n的值,故可得BM与DM【详解】(1)将A(3,2)代入y=kx中,得2=k∴反比例函数的表达式为y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.19、(1)详见解析;(2)10.【解析】
①只需证明两对对应角分别相等可得两个三角形相似;故.
②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.20、见解析【解析】试题分析:(1),,可得∽,从而得,再根据∠BDF=∠CDA即可证;(2)由∽,可得,从而可得,再由∽,可得从而得,继而可得,得到.试题解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.21、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】
(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;
(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A的坐标为(4,3),
∴OA=5,
∵OA=OB,
∴OB=5,
∵点B在y轴的负半轴上,
∴点B的坐标为(0,-5),
将点A(4,3)代入反比例函数解析式y=中,
∴反比例函数解析式为y=,
将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,
∴一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业保密协议制定指南
- 利差返还型合同
- 家庭居室装饰合同格式
- 合作股东协议书的基本模板
- 工伤保险费率调整通知
- 浅析高中教师工作心理压力及其化解4400字
- 涉外借款协议样本
- 研发人员产品软件合同
- 律师事务所律师聘请协议
- 合同终止协议范本
- 2024-2025学年八年级上学期期中考试地理试题
- 2019年湖南岳阳中考满分作文《握手》3
- 危急值的考试题及答案
- 浙江省北斗星盟2023-2024学年高二下学期5月阶段性联考数学试题2
- 统编版(2024新版)七年级《道德与法治》上册第一单元《少年有梦》单元测试卷(含答案)
- 自然拼读法-图文.课件
- 2024中国长江电力股份限公司招聘高频500题难、易错点模拟试题附带答案详解
- 创新创业实训智慧树知到期末考试答案章节答案2024年西安理工大学
- 2024届宜宾市九年级语文上学期期中考试卷附答案解析
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 硫磺安全技术说明书MSDS
评论
0/150
提交评论