版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
[在此处键入]第5讲一元二次不等式与其它不等式解法知识梳理1、一元二次不等式一元二次不等式,其中,是方程的两个根,且(1)当时,二次函数图象开口向上.(2)=1\*GB3①若,解集为.=2\*GB3②若,解集为.=3\*GB3③若,解集为.(2)当时,二次函数图象开口向下.=1\*GB3①若,解集为=2\*GB3②若,解集为2、分式不等式(1)(2)(3)(4)3、绝对值不等式(1)(2);;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【解题方法总结】1、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为,即关于的不等式的解集为.已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.2、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.3、已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为,以此类推.4、已知关于的一元二次不等式的解集为,则一定满足;5、已知关于的一元二次不等式的解集为,则一定满足;6、已知关于的一元二次不等式的解集为,则一定满足;7、已知关于的一元二次不等式的解集为,则一定满足.必考题型全归纳题型一:不含参数一元二次不等式的解法【解题总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在轴上,结合图象,写出其解集例1.(2024·上海金山·统考二模)若实数满足不等式,则的取值范围是__________.【答案】【解析】不等式,即,解得,则的取值范围是.故答案为:.例2.(2024·高三课时练习)不等式的解集为______.【答案】【解析】解:由题知不等式为,即,即,解得,所以解集为.故答案为:例3.(2024·高三课时练习)函数的定义域为______.【答案】【解析】要使函数有意义,则,解得.所以函数的定义域为.故答案为:.例4.(2024·高三课时练习)不等式的解集为______.【答案】【解析】不等式即,的根为,故的解集为,即不等式的解集为,故答案为:题型二:含参数一元二次不等式的解法【解题总结】1、数形结合处理.2、含参时注意分类讨论.例5.(2024·全国·高三专题练习)已知集合,集合,若“”是“”的充分不必要条件,则实数的取值范围(
)A. B. C. D.【答案】A【解析】由得:,,解得:,;由得:;“”是“”的充分不必要条件,,当时,,不满足;当时,,不满足;当时,,若,则需;综上所述:实数的取值范围为.故选:A.例6.(2024·全国·高三专题练习)若关于x的不等式的解集中恰有4个整数,则实数m的取值范围为(
)A. B.C. D.【答案】C【解析】不等式即,当时,不等式解集为,此时要使解集中恰有4个整数,这四个整数只能是3,4,5,6,故,当时,不等式解集为,此时不符合题意;当时,不等式解集为,此时要使解集中恰有4个整数,这四个整数只能是,故,,故实数m的取值范围为,故选:C例7.(2024·全国·高三专题练习)解下列关于的不等式.【解析】方程:且解得方程两根:;当时,原不等式的解集为:当时,原不等式的解集为:综上所述,当时,原不等式的解集为:当时,原不等式的解集为:例8.(2024·全国·高三专题练习)不等式的解集为(
)A. B.C. D.【答案】A【解析】原不等式可以转化为:,当时,可知,对应的方程的两根为1,,根据一元二次不等式的解集的特点,可知不等式的解集为:.故选:A.题型三:一元二次不等式与韦达定理及判别式【解题总结】1、一定要牢记二次函数的基本性质.2、含参的注意利用根与系数的关系找关系进行代换.例9.(2024·全国·高三专题练习)已知关于的不等式的解集为或,则下列说法正确的是(
)A. B.不等式的解集为C. D.不等式的解集为【答案】B【解析】因为关于的不等式的解集为或,所以,所以选项A错误;由题得,所以为.所以选项B正确;设,则,所以选项C错误;不等式为,所以选项D错误.故选:B例10.(2024·全国·高三专题练习)已知实数,关于的不等式的解集为,则实数a、b、、从小到大的排列是(
)A. B.C. D.【答案】A【解析】由题可得:,.由,,设,则.所以,所以,.又,所以,所以.故,.又,故.故选:A.例11.(2024·全国·高三专题练习)关于的不等式的解集为,则不等式的解集为(
)A. B. C. D.【答案】D【解析】的解集是,,得,则不等式,即,解得:,所以不等式的解集是.故选:D例12.(2024·北京海淀·101中学校考模拟预测)已知关于x的不等式的解集是,则下列四个结论中错误的是(
)A.B.C.若关于x的不等式的解集为,则D.若关于x的不等式的解集为,且,则【答案】C【解析】由题意,所以正确;对于:,当且仅当,即时成立,所以正确;对于,由韦达定理,可知,所以错误;对于,由韦达定理,可知,则,解得,所以正确,故选:.例13.(2024·全国·高三专题练习)已知关于x的不等式的解集为,其中,则的最小值为(
)A.-2 B.1 C.2 D.8【答案】C【解析】由题意可知,方程的两个根为m,,则,解得:,故,,所以,当且仅当,即时取等号,则,所以,当且仅当,即时取等号,故的最小值为2.故选:C.题型四:其他不等式解法【解题总结】1、分式不等式化为二次或高次不等式处理.2、根式不等式绝对值不等式平方处理.例14.(2024·北京海淀·统考一模)不等式的解集为_________.【答案】或【解析】根据分式不等式解法可知等价于,由一元二次不等式解法可得或;所以不等式的解集为或.故答案为:或例15.(2024·全国·高三专题练习)不等式的的解集是______【答案】:【解析】则或【考点定位】本题考查将分式不等式等价转化为高次不等式、考查高次不等式的解法例16.(2024·上海·高三专题练习)若不等式,则x的取值范围是____________.【答案】【解析】∵,则,解得,∴x的取值范围是.故答案为:.例17.(2024·上海浦东新·统考三模)不等式的解集是__________.【答案】【解析】当时,,解得,此时解集为空集,当时,,即,符合要求,此时解集为,当时,,解得,此时解集为空集,综上:不等式的解集为.故答案为:例18.(2024·上海杨浦·高三复旦附中校考阶段练习)已知集合,则___________.【答案】【解析】,.故.故答案为:题型五:二次函数根的分布问题【解题总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.例19.(2024·全国·高三专题练习)方程在区间内有两个不同的根,的取值范围为__.【答案】【解析】令,图象恒过点,方程0在区间内有两个不同的根,,解得.故答案为:例20.(2024·全国·高三专题练习)已知方程的两根分别在区间,之内,则实数的取值范围为______.【答案】.【解析】方程
方程两根为,若要满足题意,则,解得,故答案为:.例21.(2024·全国·高三专题练习)若方程有两个不相等的实根,则可取的最大整数值是______.【答案】1【解析】方程化为,由,解得,所以最大整数值是.故答案为:1.例22.(2024·全国·高三专题练习)已知,,则的取值范围为________.【答案】【解析】,故,,,将看成方程的两根,则,即,故,解得.故答案为:题型六:一元二次不等式恒成立问题【解题总结】恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R上恒成立,可用判别式,一元二次不等式在给定区间上恒成立,不能用判别式,一般分离参数求最值或分类讨论.例23.(2024·全国·高三专题练习)若不等式对恒成立,则实数的取值范围是________.【答案】【解析】原不等式可化为对恒成立.(1)当时,若不等式对恒成立,只需,解得;(2)当时,若该二次不等式恒成立,只需,解得,所以;综上:.故答案为:例24.(2024·全国·高三专题练习)若不等式对恒成立,则a的取值范围是____________.【答案】【解析】由不等式对恒成立,可转化为对恒成立,即,而,当时,有最大值,所以,故答案为:.例25.(2024·全国·高三专题练习)若关于x的不等式在区间上有解,则实数a的取值范围是______.【答案】【解析】因为,所以由得,因为关于的不等式在区间上有解,所以只需小于等于的最大值,当时,,当时,,当且仅当时,等号成立,故的最大值为1,所以,即实数的取值范围是.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发电机销货合同范例
- 医护雇工合同范例
- 办公器材采购合同模板
- 会议服务合同范例
- 合伙式联营合同范例
- 厂房开荒保洁合同范例
- 外聘模特合同范例
- 包租解约合同范例
- 台球厅合作合同模板
- 公司系统服务合同范例
- 肌肉注射操作并发症的预防及处理
- 起重机械使用单位安全总监-特种设备考试题库
- 江苏省徐州市六县2024-2025学年高一数学上学期期中考试试卷
- JTG-T-F20-2015公路路面基层施工技术细则
- 2024山东能源集团中级人才库选拔【重点基础提升】模拟试题(共500题)附带答案详解
- 国家开放大学电大《11662会计信息系统(本)》期末终考题库及标准参考答案
- 医院公共卫生管理制度
- DL-T5745-2021电力建设工程工程量清单计价规范
- 物业安全风险识别与评估
- 厂房设施维护保养计划
- 2024病案库房建设规范
评论
0/150
提交评论