第11讲、函数的图像(学生版)_第1页
第11讲、函数的图像(学生版)_第2页
第11讲、函数的图像(学生版)_第3页
第11讲、函数的图像(学生版)_第4页
第11讲、函数的图像(学生版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

[在此处键入]第11讲函数的图像知识梳理一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法1、直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2、图像的变换(1)平移变换①函数的图像是把函数的图像沿轴向左平移个单位得到的;②函数的图像是把函数的图像沿轴向右平移个单位得到的;③函数的图像是把函数的图像沿轴向上平移个单位得到的;④函数的图像是把函数的图像沿轴向下平移个单位得到的;(2)对称变换①函数与函数的图像关于轴对称;函数与函数的图像关于轴对称;函数与函数的图像关于坐标原点对称;②若函数的图像关于直线对称,则对定义域内的任意都有或(实质上是图像上关于直线对称的两点连线的中点横坐标为,即为常数);若函数的图像关于点对称,则对定义域内的任意都有③的图像是将函数的图像保留轴上方的部分不变,将轴下方的部分关于轴对称翻折上来得到的(如图(a)和图(b))所示④的图像是将函数的图像只保留轴右边的部分不变,并将右边的图像关于轴对称得到函数左边的图像即函数是一个偶函数(如图(c)所示).注:的图像先保留原来在轴上方的图像,做出轴下方的图像关于轴对称图形,然后擦去轴下方的图像得到;而的图像是先保留在轴右方的图像,擦去轴左方的图像,然后做出轴右方的图像关于轴的对称图形得到.这两变换又叫翻折变换.⑤函数与的图像关于对称.(3)伸缩变换①的图像,可将的图像上的每一点的纵坐标伸长或缩短到原来的倍得到.②的图像,可将的图像上的每一点的横坐标伸长或缩短到原来的倍得到.【解题方法总结】(1)若恒成立,则的图像关于直线对称.(2)设函数定义在实数集上,则函数与的图象关于直线对称.(3)若,对任意恒成立,则的图象关于直线对称.(4)函数与函数的图象关于直线对称.(5)函数....与函数的图象关于直线对称.(6)函数与函数的图象关于点中心对称.(7)函数平移遵循自变量“左加右减”,函数值“上加下减”.必考题型全归纳题型一:由解析式选图(识图)【例1】(2024·山东烟台·统考二模)函数的部分图象大致为(

)A. B.C. D.【对点训练1】(2024·重庆·统考模拟预测)函数的图像是(

)A.

B.

C.

D.

【对点训练2】(2024·安徽安庆·安庆市第二中学校考二模)函数的部分图象大致是(

)A. B.C. D.【对点训练3】(2024·全国·模拟预测)函数的大致图像为(

)A.

B.

C.

D.

【解题方法总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式【例2】(2024·四川遂宁·统考二模)数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图像,则该段乐音对应的函数解析式可以为(

)A. B.C. D.【对点训练4】(2024·全国·校联考模拟预测)已知函数在上的图像如图所示,则的解析式可能是(

)A. B.C. D.【对点训练5】(2024·河北·统考模拟预测)已知函数的部分图象如图所示,则的解析式可能为(

)A. B.C. D.【对点训练6】(2024·贵州遵义·校考模拟预测)已知函数在上的大致图象如下所示,则的解析式可能为(

)A. B.C. D.【解题方法总结】1、从定义域值域判断图像位置;2、从奇偶性判断对称性;3、从周期性判断循环往复;4、从单调性判断变化趋势;5、从特征点排除错误选项.题型三:表达式含参数的图象问题【例3】(2024·全国·高三专题练习)在同一直角坐标系中,函数,,且的图象可能是(

)A. B.C. D.【对点训练7】(2024·山东滨州·统考二模)函数的图象如图所示,则(

)A.,, B.,,C.,, D.,,【对点训练8】(2024·全国·高三专题练习)已知函数(a,b为常数,其中且)的图象如图所示,则下列结论正确的是(

)A., B.,C., D.,【对点训练9】(2024·全国·高三专题练习)若函数的部分图象如图所示,则(

)A. B. C. D.【对点训练10】(2024·全国·高三专题练习)在同一直角坐标系中,函数且的图象可能是A. B.C. D.【对点训练11】(多选题)(2024·全国·高三专题练习)函数在,上的大致图像可能为()A. B.C. D.【解题方法总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题【例4】(2024·北京·高三专题练习)高为、满缸水量为的鱼缸的轴截面如图所示,现底部有一个小洞,满缸水从洞中流出,若鱼缸水深为时水的体积为,则函数的大致图像是A. B.C. D.【对点训练12】(2024·四川成都·高三四川省成都市玉林中学校考阶段练习)如图为某无人机飞行时,从某时刻开始15分钟内的速度(单位:米/分钟)与时间(单位:分钟)的关系.若定义“速度差函数”为无人机在时间段内的最大速度与最小速度的差,则的图像为(

)A. B.C. D.【对点训练13】(2024·湖南长沙·高三长沙一中校考阶段练习)青花瓷,又称白地青花瓷,常简称青花,是中国瓷器的主流品种之一.如图,这是景德镇青花瓷,现往该青花瓷中匀速注水,则水的高度与时间的函数图像大致是(

)A. B.C. D.【对点训练14】(2024·全国·高三专题练习)列车从地出发直达外的地,途中要经过离地的地,假设列车匀速前进,后从地到达地,则列车与地距离(单位:与行驶时间(单位:)的函数图象为(

)A. B.C. D.【对点训练15】(2024·全国·高三专题练习)如图,正△ABC的边长为2,点D为边AB的中点,点P沿着边AC,CB运动到点B,记∠ADP=x.函数f(x)=|PB|2﹣|PA|2,则y=f(x)的图象大致为()A. B.C. D.【对点训练16】(2024·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h关于注水时间t的函数图象大致是(

)A. B.C. D.【解题方法总结】(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.题型五:函数图象的变换【例5】(2024·广西玉林·统考模拟预测)已知图1对应的函数为,则图2对应的函数是(

)A. B. C. D.【对点训练17】(2024·全国·高三专题练习)已知函数的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式(

)A. B.C. D.【对点训练18】(2024·全国·高三专题练习)已知函数,则下列图象错误的是(

)A. B.C. D.【对点训练19】(2024·全国·高三专题练习)函数向右平移1个单位,再向上平移2个单位的大致图像为()A. B.C. D.【解题方法总结】熟悉函数三种变换:(1)平移变换;(2)对称变换;(3)伸缩变换.题型六:函数图像的综合应用【例6】(2024·上海浦东新·华师大二附中校考模拟预测)若关于的方程恰有两个不同的实数解,则实数__________.【对点训练20】(2024·天津和平·统考三模)已知函数,若关于的方程恰有三个不相等的实数解,则实数的取值集合为___________.【对点训练21】(2024·河南·校联考模拟预测)定义在R上的函数满足,且当时,.若对任意,都有,则t的取值范围是__________.【对点训练22】(2024·四川绵阳·统考二模)若函数,,则函数的零点个数为______.【解题方法总结】1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论