2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题【含答案】_第1页
2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题【含答案】_第2页
2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题【含答案】_第3页
2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题【含答案】_第4页
2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年江西省南昌市进贤县九年级数学第一学期开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,那么折叠△AED的面积为()cm2A.16.9 B.14.4 C.13.5 D.11.82、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AC等于A.5 B.34 C.8 D.23、(4分)如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是()A.35cm2 B.40cm2 C.45cm2 D.50cm24、(4分)一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟5、(4分)如图,点为正方形内一点,,,连结,那么的度数是()A. B. C. D.6、(4分)在实数范围内,下列判断正确的是()A.若,则m=n B.若,则a>bC.若,则a=b D.若,则a=b7、(4分)若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥08、(4分)如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm2 B.24cm2 C.48cm2 D.96cm2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知,则比较大小2_____3(填“<“或“>”)10、(4分)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.11、(4分)如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.12、(4分)在函数y=中,自变量x的取值范围是_____.13、(4分)如图,将边长为4的正方形纸片沿折叠,点落在边上的点处,点与点重合,与交于点,取的中点,连接,则的周长最小值是__________.三、解答题(本大题共5个小题,共48分)14、(12分)由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△ABC;(2)画出△ABC关于原点O成中心对称的△ABC;(3)请你判断△AAA与△CCC的相似比;若不相似,请直接写出△AAA的面积.15、(8分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?考评项目成绩/分甲乙理论知识(笔试)8895模拟上课9590答辩889016、(8分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.17、(10分)用公式法解下列方程:

(1)2x2−4x−1=0;

(2)5x+2=3x2.18、(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.求这个函数的表达式;在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.20、(4分)已知,则=______.21、(4分)关于的方程有实数根,则的取值范围是_________.22、(4分)已知点P(-1,m),Q(-2,n)都在反比例函数的图像上,则m____n(填“>”或“<”或“=”).23、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.25、(10分)解分式方程或化简求值(1);(2)先化简,再求值:,其中.26、(12分)用圆规和直尺作图,不写作法,保留作图痕迹.已知及其边上一点.在内部求作点,使点到两边的距离相等,且到点,的距离相等.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据矩形的性质及三角形的面积公式求得BF=12cm,在Rt△ABF中,由勾股定理可得,AF=13cm;由折叠的性质可得AD=AF,DE=EF,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=1cm.在Rt△ECF中,由勾股定理可得方程(5-x)2+12=x2,解方程求得x的值,再由三角形的面积公式即可求得△AED的面积.【详解】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD=5cm,BC=AD,∵△ABF的面积为30cm2,∴BF=12cm,在Rt△ABF中,由勾股定理可得,AF=(cm);由折叠的性质可得AD=AF,DE=EF,∴BC=AD=13cm,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=BC-BF=13-12=1(cm).在Rt△ECF中,由勾股定理可得,(5-x)2+12=x2,解得x=,即DE=cm,∴△AED的面积为:AD×DE=(cm2)故选A.本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.2、B【解析】

根据图1和图2得当t=3时,点P到达A处,即AB=3;当S=15时,点P到达点D处,可求出BC=5,利用勾股定理即可求解.【详解】解:当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12CD∴CD=6,当S=15时,点P到达点D处,则S=12CD•BC=3×BC=15则BC=5,由勾股定理得AD=AC=32故选:B.本题考查了动点问题的函数图象、三角形面积公式等知识,看懂函数图象是解决问题的关键.3、C【解析】

依据图形可发现菱形ABCD与菱形RESF相似,连接RS交EF与点O,可求得它们的相似比=OE:OB,然后依据面积比等于相似比的平方求解即可.【详解】连接RS,RS交EF与点O.

由图形的对称性可知RESF为菱形,且菱形ABCD与菱形RESF相似,

∴OE=OF.

∴OB=3OE,

∴,

∴菱形ABCD的面积=5×9=45cm1.

故选:C.本题主要考查的是菱形的性质,掌握求得两个菱形的相似比是解题的关键.4、C【解析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.5、C【解析】

由正方形的性质得到AD=CD,根据等腰三角形的性质得到∠DAE=∠AED=70°,求得∠ADE=180°-70°-70°=40°,得到∠EDC=50°,根据等腰三角形的性质即可得到结论.【详解】解:,,,四边形是正方形,,,,,,,故选:.本题考查了正方形的性质,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.6、D【解析】

根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;

B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;

C、两个数可能互为相反数,如a=-3,b=3,故选项错误;

D、根据立方根的定义,显然这两个数相等,故选项正确.

故选:D.考核知识点:实数的性质.理解算术平方根和立方根性质是关键.7、C【解析】试题解析:根据题意得:解得:故选C.8、B【解析】

设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.【详解】设AC交BD于O.∵四边形ABCD是菱形,∴AC⊥BD,∵AD=5cm,OD=OB=12BD=3cm∴OA=52-∴AC=2OA=8,∴S菱形ABCD=12×AC×BD=24故选B.本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、<【解析】

要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.【详解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案为:<本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.10、⊥【解析】

作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.【详解】解:∵H、G,分别为AD、DC的中点,

∴HG∥AC,

同理EF∥AC,

∴HG∥EF;

同理可知HE∥GF.

∴四边形EFGH是平行四边形.

当AC⊥BD时,AC⊥EH.

∴GH⊥EH.

∴∠EHG=90°.

∴四边形EFGH是矩形.

故答案为:⊥.本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.11、【解析】

作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.【详解】解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).∵反比例函数的图象经过点A(4,5),所以由勾股定理可知:OA=,∴k=4×5=20,∴y=,∴AA′的中点K(),∴直线OK的解析式为y=x,由,解得或,∵点P在第一象限,∴P(),故答案为().本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.12、x≥﹣2且x≠1.【解析】

根据二次根式的非负性及分式有意义的条件来求解不等式即可.【详解】解:根据题意,得:x+2≥1且x≠1,解得:x≥﹣2且x≠1,故答案为x≥﹣2且x≠1.二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.13、【解析】

如图,取CD中点K,连接PK,PB,则CK=2,由折叠的性质可得PG=PC,GH=DC=4,PQ=PK,BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,据此根据勾股定理进行求解即可得答案.【详解】如图,取CD中点K,连接PK,PB,则CK==2,∵四边形ABCD是正方形,∴∠ABC=90°,∵将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,∴PG=PC,GH=DC=4,PQ=PK,∴BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,此时,PK+PB=BK=,∴△PGQ周长的最小值为:PQ+PG+QG=PK+PB+QG=BK+QG=2+2,故答案为2+2.本题考查了正方形的性质,轴对称图形的性质,直角三角形斜边中线的性质,综合性较强,难度较大,正确添加辅助线,找出PQ+PG的最小值是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)4.【解析】

(1)利用关于y轴对称点的性质得出对应点位置求出即可;(2)利用关于原点对称点的性质得出对应点坐标进而求出即可;(3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.【详解】(1)如图所示:△ABC,即为所求;(2)如图所示:△ABC,即为所求;(3)∵,∴△AAA与△CCC不相似,S=×2×4=4.此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.15、甲优先录取.【解析】

根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.【详解】解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,乙的考评成绩是:91×30%+90×60%+90×10%=91.1.答:甲优先录取.本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.16、(1)A种树每棵2元,B种树每棵80元;(2)当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.【解析】

(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得,解得,答:A种树木每棵2元,B种树木每棵80元.(2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y元,则y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+73=8550(元).答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8550元.17、(1)x1=,x2=;(2)x1=2,x2=−.【解析】

把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.【详解】(1)∵△=16+8=24>0,

∴x==,

x1=,x2=;

(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.18、;详见解析;或【解析】

(1)把x=0,y=4;x=1,y=3代入函数中,求出k、b即可;(1)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【详解】(1)把x=0,y=4代入得:4=,∴b=3,把x=1,y=3,b=3代入得:,∴k=1,即函数的表达式为,(1)由题意得:,画图象如下图:(3)由上述图象可得:当x<0或x1时,,故答案为:x<0或x1.本题考查了待定系数法求函数表达式,函数图象的画法,由图象写出不等式的解集,掌握函数的图象和性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.20、【解析】

已知等式整理表示出a,原式通分并利用同分母分式的加减法则计算,把表示出的a代入计算即可求出值.【详解】解:由=,得到2a=3b,即a=,则原式===.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、k≤2【解析】

当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.【详解】当k-1=0,即k=1时,方程为2x+1=0,解得x=-,符合题意;②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,解得:k≤2且k≠1.综上即可得出k的取值范围为k≤2.故答案为k≤2.本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.22、>【解析】

根据反比例函数的图像特点即可求解.【详解】∵点P(-1,m),Q(-2,n)都在反比例函数的图像上,又-1>-2,反比例函数在x<0时,y随x的增大而增大,∴m>n此题主要考查反比例函数的图像,解题的关键是熟知反比例函数的图像特点.23、150【解析】

根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB和∠DEC,进而利用∠AED=360°-∠AEB-∠DEC-∠BEC即可求出∠AED的度数.【详解】解:∵四边形ABCD是正方形,△EBC是等边三角形,∴AB=BC=BE,EC=BC=DC,∠ABE=∠DCE=90°-60°=30°,∴∠AEB=∠EAB=(180°-30°)÷2=75°,∴∠DEC=∠EDC=(180°-30°)÷2=75°,∴∠AED=360°-∠AEB-∠DEC-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论