高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案-人教版高三全册数学学案_第1页
高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案-人教版高三全册数学学案_第2页
高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案-人教版高三全册数学学案_第3页
高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案-人教版高三全册数学学案_第4页
高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案-人教版高三全册数学学案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲用样本估计总体

考点回顾考纲解读考向预测

年份卷型考点题号分值1.掌握频率分布直方图、茎叶图等统计2019年预计考查:①频率分布直

图表的画法;方图;②根据茎叶图、频率分布直方图

2017in折线图35

2.会计算样本数据的数字特征;估计总体;③实际问题中的应用.

I柱状图1912

20163.会用样本的频率分布估计总体分布,用样本估计总体,要正确审题、搞

n频率表1812会用样本的基本数字特征估计总体清概念、记准公式、数形结合、适当

2015u直方图1812的基本数字特征.转化.

板块一知识梳理•自主学习

[必备知识]

考点1用样本的频率分布估计总体分布

1.作频率分布直方图的步骤

(1)求极差(即一组数据中最大值与最小值的差).

(2)决定组距与组数.

(3)将数据分组.

(4)列频率分布表.

(5)画频率分布直方图.

2.频率分布折线图和总体密度曲线

(1)频率分布折线图:连接频率分布直方图中各小长方形上端的空直,就得频率分布折

线图.

(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的

频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.

3.茎叶图

茎是指中间的一列数,叶是从茎的旁边生长出来的数.

考点2用样本的数字特征估计总体的数字特征

1.众数:一组数据中出现次数最多的数.

2.中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数

个数,则中间两数的平均数是中位数.

3.平均数:反映了一组数据的平均水平.

4.标准差:是样本数据到平均数的一种平均距离,s=

勺孑*]—x『+(X2-------F(XL

5.方差:5=-[(^i—x)'+(A2—%)"H--F(无一J”是样本数据,〃是样本容量,

n

二是样本平均数).

[必会结论]

频率分布直方图与众数、中位数与平均数的关系

(1)最高的小长方形底边中点的横坐标即是众数.

(2)中位数左边和右边的小长方形的面积和是相等的.

(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积

乘以小长方形底边中点的横坐标之和.

[考点自测]

1.判断下列结论的正误.(正确的打“,错误的打"X”)

(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()

(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.()

(3)一组数据的方差越大,说明这组数据越集中.()

(4)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数

据信息就被抹掉了.()

(5)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的

数据可以只记一次.()

答案⑴J(2)X(3)X(4)V(5)X

2.[2017•芜湖模拟]某市中心购物商场在“双11”开展的“买三免一”促销活动异常

火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示,

已知12时至16时的销售额为90万元,则10时至12时销售额为()

A.120万元B.100万元C.80万元D.60万元

答案D

解析由图可知12时至16时频率为0.45,销售额90万元,10时至12时频率为0.3,

A3

销售额为台*X90=60万元.故选D.

U.4D

3.如图是2017年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,

去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为()

44647

A.85,84B.84,85C.86,84D.84,86

答案A

解析由图可知去掉一个最高分和一个最低分后,所剩数据为84,84,86,84,87,则平

均数为85,众数为84.

4.[课本改编]在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的

2

面积等于其他8个长方形的面积和的.且样本容量为140,则中间一组的频数为()

5

A.28B.40C.56D.60

答案B

55

解析设中间一个小长方形面积为x,其他8个长方形面积为因此x+]x=l,r.x

2

T

2

所以中间一组的频数为140X7=40.故选B.

5.[2015•湖北高考]某电子商务公司对10000名网络购物者2014年度的消费情况进行

统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.

频率/组距

a

2.5

2.0

1.5

0.8

0.2

0().30.40.50.60.70.80.9个额/万元

(1)直方图中的a=;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.

答案(1)3(2)6000

解析(1)由0.1XL5+0.1X2.5+0.IXa+O.1X2.0+0.1X0.8+0.1XO.2=1,解

得a=3.

(2)区间[0.3,0.5)内的频率为0.IX1.5+0.1X2.5=0.4,故[0.5,0.9]内的频率为1

-0.4=0.6.

因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6X10000=6000.

板块二典例探究•考向突破

考向频率分布直方图的应用

例1[2016•山东高考]某高校调查了200名学生每周的自习时间(单位:小时),制

成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为

[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生

中每周的自习时间不少于22.5小时的人数是()

频率佟目距f

0.16...................——

0.10.........-1——

0.08............................——

0.04.........…...................——

0.02——

八----------------------------►

017.52()22.52527.530自习时间〃卜时

A.56B.60C.120D.140

答案I)

解析由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1

-(0.02+0.10)X2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为

200X0.7=140.故选D.

触类旁通

应用频率分布直方图应注意的问题

(1)频率分布直方图是从各个小组数据在样本容量中所占比例大小的角度,表示数据分

布的规律.

(2)图中各小长方形的面积等于相应各组的频率,它直观反映了数据在各个小组的频率

的大小.

频数

(3)要把握一个基本公式:频率=梓翕;量.

【变式训练1】为了解某校高三学生联考的数学成绩情况,从该校参加联考学生的数

学成绩中抽取一个样本,并分成五组,绘成如图所示的频率分布直方图,已知第一组至第五

组的频率之比为1:2:8:6:3,第五组的频数为6,则样本容量为.

答案40

解析因为第一组至第五组的频率之比为1:2:8:6:3,所以可设第一组至第五组的

频率分别为左2左瓯6左34,又频率之和为1,所以什2什8什6—,解得仁!=

0.05,所以第五组的频率为3X0.05=0.15,又第五组的频数为6,所以样本容量为』=

0.1b

40.

考向图

茎叶图的应用

例2[2017•山东高考]如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量

数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()

甲组乙组

659

25617y

x478

A.3,5B.5,5C.3,7D.5,7

答案A

解析甲组数据的中位数为65,由甲、乙两组数据的中位数相等得尸5.又甲、乙两组

数据的平均值相等,(56+65+62+74+70+x)(59+61+67+65+78),

55

/.x=3.故选A.

触类旁通

茎叶图的绘制及应用

(1)一般制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为

“叶”,茎相同者共用一个茎,茎按从小到大顺序由上到下列出.

(2)估计数字特征,给定两组数据的茎叶图,“重心”下移者平均数较大,数据集中者

方差较小.

【变式训练2][2018•长沙模拟]下面的茎叶图是某班学生在一次数学测试时的成

绩:

女生男生

309336

53322008023668

53107145

66228

7537

根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是()

A.15名女生成绩的平均分为78

B.17名男生成绩的平均分为77

C.女生成绩和男生成绩的中位数分别为82,80

D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重

答案C

解析15名女生成绩的平均分为白义(90+93+80+80+82+82+83+83+85+70+

10

71+73+75+66+57)=78,A正确;17名男生成绩的平均分为卷义(93+93+96+80+82

+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;观察茎叶图,对

男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;根据女生和男生成绩数据

分析可得,两组数据的中位数均为80,C错误.

考向3数字特征的应用

》电题免度」…样本数定特征与直方图交汇

例3[2018•益阳模拟]为了了解某校九年级1600名学生的体能情况,随机抽查了部

分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方

图,根据统计图的数据,下列结论错误的是()

A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25

B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5

C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320

D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32

答案D

解析由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是

26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以

估计1分钟仰卧起坐的次数超过30的人数为320;1分钟仰卧起坐的次数少于20的频率为

0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故D错.

》电题免度2一样本的数室特延与茎叶图

例4将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均

分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以*表示:

877

94010%91

则7个剩余分数的方差为

解析由图可知去掉的两个数是87,99,所以87+90X2+91X2+94+90+x=91X7,

x=4.S=1[(87-91)2+(90-91)2X2+(91-91)2X2+(94-91)2X2]=y.

2命题角度.3…样本的数宗特征与优化.决策问题

例5某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包

产品,称其重量,分别记录抽查数据如下:

甲:102,101,99,98,103,98,99;

乙:110,115,90,85,75,115,110.

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间的产品较稳定.

解(1)因为间隔时间相同,所以是系统抽样.

(2)茎叶图如下:

75

85

998890

321

0055

(3)甲车间:

平均值:(102+101+99+98+103+98+99)=100,

124

方差:sf[(102-100)2+(101-100)2+—+(99-100)21=y.

乙车间:

平均值:%2=y(110+115+90+85+75+115+110)=100,

方差:(110-100)2+(115-100)2+-+(110-100)2]

'.'X1—X2,.,.甲车间的产品较稳定.

触类旁通

(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实

际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差)分析稳定情况.

(2)若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);

另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据

的波动性大小比较方差(标准差)的大小.

(--------------------------------------IC幺师筌记•“加领悟I----------------------------------------------------------------------------------------------------------->

IMINtiMliniJI

。核心规律

1.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数

的改变,这是中位数、众数都不具有的性质.

2.众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.当一组数据中

有不少数据多次重复出现时,其众数往往更能反映问题.

3.某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在

所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.

满分策略

1.正确理解频率分布直方图

频率频率

(1)纵轴表示蠡,即小长方形的高=蠡;

频率

(2)小长方形的面积=组距X^=频率:

(3)数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.

2.茎叶图中一定要分清茎、叶的含义.

3.求解中位数时一定要注意先对原始数据进行排序后才能求解.

板块三启智培优•破译高考

易错警示系列11一一频率分布直方图中概念不清致误

[2016•四川高考]我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居

民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),

将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.

频率/组距

00.511.522.533.544.5月均用水量(吨)

(1)求直方图中a的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(3)估计居民月均用水量的中位数.

错因分析(1)在频率分布直方图中,小矩形的面积表示频率,纵坐标表示黯,解本

题时,易把纵坐标误认为频率而致误.

(2)频率分布直方图中中位数左右两边小长方形的面积相等,解本题时由于中位数的概

念不清易出错.

解(1)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08X0.5=0.04.

同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为

0.08,0.21,0.25,0.06,0.04,0.02.

由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5Xa+0.5Xa,解得a=

0.30.

(2)由⑴知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.

由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为

300000X0.12=36000.

(3)设中位数为x吨.

因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0,5,而前4组的频

率之和为0.04+0.08+0.15+0.21=0.48<0,5,所以2Wx<2.5.

由0.50X(x-2)=0.5—0.48,解得x=2.04.

故可估计居民月均用水量的中位数为2.04.

答题启示条形统计图(直方图)中,中位数左边和右边的直方图的面积应该相等,由此

可以估计中位数的值.

/跟踪训练

某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),

[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,

用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

解(1)依题意,20X(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)=1,解得

x—0.0075.

(2)由图可知,最高矩形的数据组为[220,240),

220+240

二众数为,=230.

2

:[160,220)的频率之和为(0.002+0.0095+0.011)X20=0.45,依题意,设中位数为

y,,0.45+(厂-220)X0.0125=0.5.解得y=224,.,.中位数为224.

⑶月平均用电量在[220,240)的用户在四组用户中所占比例为

0.01255

.•.月平均用电量在[220,240)的用户中应抽取

0.0125+0.0075+0.005+0.0025-11'

54

11乂元=5户.

板块四模拟演练•提能增分

[A级基础达标]

1.[2017•全国卷I]为评估一种农作物的种植效果,选了〃块地作试验田.这〃块地

的亩产量(单位:kg)分别为不,如x”,下面给出的指标中可以用来评估这种农作物亩

产量稳定程度的是()

A.小,X”…,x〃的平均数

B.xi,x-i,•••,%,的标准差

C.Xi,x2,•••,”,的最大值

D.x\,X2,先的中位数

答案B

解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定

程度,应该用样本数据的极差、方差或标准差.故选B.

2.[2018•湖南模拟]在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图

如图所示.

1300345668889

1411122233445556678

150122333

若将运动员按成绩由好到差编为1〜35号,再用系统抽样方法从中抽取7人,则其中成

绩在区间[139,151]上的运动员人数是()

A.3B.4C.5D.6

答案B

解析由茎叶图可知,在区间[139,151]的人数为20,再由系统抽样的性质可知人数为

7

20X—=4人.

35

3.[2018•广州联考]学校为了解学生在课外读物方面的支出情况,抽取了〃位同学进

行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)

的同学有67人,其频率分布直方图如图所示,则〃的值为()

A.100B.120C.130D.390

答案A

解析由图知[10,30)的频率为:(0.023+0.01)X10=0.33,[30,50)的频率为1-0.33

67

=0.67,所以〃=77。=100,故选A.

0.67

4.[2018•郑州质量预测]PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为

可入肺颗粒物.如图是根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单

位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()

甲乙

20.041236

930.059

6210.0629

3310.079

640.087

70.09246

A.甲B.乙

C.甲、乙相等D.无法确定

答案A

解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,

因此甲地浓度的方差较小.

5.甲、乙两人在一次射击比赛中射靶5次,两人成绩的条形统计图如图所示,则()

f频数[频数

3-3-n

2-2-

nnnnn....I.ln..n.,

0345678910环数0345678910环数

甲乙

A.甲的成绩的平均数小于乙的成绩的平均数

B.甲的成绩的中位数等于乙的成绩的中位数

C.甲的成绩的方差小于乙的成绩的方差

D.甲的成绩的极差小于乙的成绩的极差

答案C

,,4+5+6+7+8

解析甲的平均数=6,中位数是6,极差是4,方差是

f+(飞+。”工2;乙的平均数是5+5+:6+9=6,中位数是5,极差是4,

(-1)2+(一以+(-1)2+。2+3212

-X--羊日,故选C.

55

6.[2018•金华模拟]设样本数据乂,在,…,出的均值和方差分别为1和4,若匕=

x,+a(a为非零常数,,=1,2,…,10),则%,M,…,外的均值和方差分别为()

A.1+a,41+a,4+a

C.1,41,4+a

答案A

解析由均值和方差的定义及性质可知:y=x+a=l+a,sj=s:=4.故选A.

7.[2015•重庆高考]重庆市2013年各月的平均气温(℃)数据的茎叶图如下:

338

则这组数据的中位数是()

A.19B.20C.21.5D.23

答案B

解析由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,

恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.选B.

8.[2018•聊城模拟]某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,

已知记录的平均身高为175cm,但有一名运动员的身高记录不清楚,其末位数记为x,那么

x的值为.

2%45

答案2

解析由题意有:175X7=180X2+170X5+l+l+2+x+4+5=x=2.

9.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如

下表(单位:环):

——19

解析x甲=Xz=9,[(9-10)2+(9—81+(9—9)2+(9—9)2+(9—9)2]=£,

55

2

&=3x[(9-10)+(9—10)2+(9—7)2+(9—9)2+(9_9)2]=?〉s%,故甲更稳定.

10.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成

频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),

[20,40),[40,60),[60,80),[80,100].则

(1)图中的x=;

(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计

有名学生可以申请住宿.

答案(1)0.0125(2)72

解析”等于该组的频率除以组距20.

由频率分布直方图知20x=1-20X(0.025+0.0065+0.003+0.003),解得x=0.0125.

上学时间不少于1小时的学生频率为0.12,因此估计有0.12X600=72(名)学生可以申请住

宿.

[B级知能提升]

1.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理

后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1:

3:5,第2个小组的频数为15,则被抽查的美术生的人数是()

频率/组距

答案c

解析设被抽查的美术生的人数为n,因为后2个小组的频率之和为(0.0375+

0.0125)X5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1:3:

5+15+25

5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以〃

0.75

60.

2.[2015•安徽高考]若样本数据小,孙…,•的标准差为8,则数据2小一1,2抢一1,…,

2小。一1的标准差为()

A.8B.15C.16D.32

答案C

解析已知样本数据X\,X2,­­•,司0的标准差为s=8,则S2=64,数据2司一1,2及一1,…,

2A-,O-1的方差为22s2=22X64,所以其标准差为4荻而=2X8=16.

3.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70〜99分),若甲、乙

两组学生的平均成绩一样,则2=;甲、乙两组学生的成绩相对整齐的是.

甲组乙组

576

98859

a8987

答案5甲组

75+88+89+98+90+a

解析由题意可知

5

76+85+89+98+9713141

—89,解得a=5.因为晶=£义(d+l+O+妒+G?)=-^,sz=-

5OD0

Q30

X(13*2+0+92+82)=『所以永s"故成绩相对整齐的是甲组.

4.[2018•南宁模拟]某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学

期10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.

甲乙

9757

8775485899

764395679

(1)你认为选派谁参赛更合适?并说明理由;

(2)若从甲、乙两人90分以上的成绩中各随机抽取1次,求抽到的2次成绩均大于95

分的概率.

解(1)由茎叶图可知,甲的平均成绩,

79+84+85+87+87+88+93+94+96+97

甲==89,乙的平均成绩才乙=

X10

75+77+85+88+89+89+95+96+97+99

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论