版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年江苏省无锡九上数学开学调研试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)只用一种多边形不能镶嵌整个平面的是()A.正三角形 B.正四边形 C.正五边形 D.正六边形2、(4分)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有()A.1个 B.1个 C.3个 D.4个3、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个4、(4分)不等式:的解集是()A. B. C. D.5、(4分)若=﹣a,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣36、(4分)已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是()A.17B.16C.15D.147、(4分)目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知,则用科学记数法表示为()A. B. C. D.8、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.10、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.11、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.12、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.13、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.三、解答题(本大题共5个小题,共48分)14、(12分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均数方差中位数甲77乙5.4(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.15、(8分)如图,在平面直角坐标系中,直线与直线相交于点A.(I)求直线与x轴的交点坐标,并在坐标系中标出点A及画出直线的图象;(II)若点P是直线在第一象限内的一点,过点P作PQ//y轴交直线于点Q,△POQ的面积等于60,试求点P的横坐标.16、(8分)计算:+(π﹣3)0﹣()﹣1+|1﹣|17、(10分)已知2y+1与3x-3成正比例,且x=10时,y=4(1)求y与x之间的函数关系式,并指出它是什么函数;(2)点P在这个函数图象上吗?18、(10分)如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.20、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.21、(4分)已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.22、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.23、(4分)一组数据:3,5,9,12,6的极差是_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?25、(10分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.26、(12分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【详解】解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;
B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;
D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.
故选:C.本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.2、C【解析】
连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【详解】连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E,P,F,C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,故③正确;取AE的中点O,连接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当O、C、P共线时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵OC==,AE==,∴PC的最小值为﹣,故④错误,故选:C.此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.3、C【解析】
直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.故选:.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.4、C【解析】
利用不等式的基本性质:先移项,再系数化1,即可解得不等式;注意系数化1时不等号的方向改变.【详解】1-x>0,解得x<1,故选C.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5、A【解析】
根据二次根式的性质列出不等式,解不等式即可解答.【详解】∵==﹣a,∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.6、B【解析】
根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.【详解】把这组数据按照从小到大的顺序排列:14,15,15,16,16,16,17,最中间的数据是16,所以这组数据的中位数是16.故选B.本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.7、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,.故选:.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、C【解析】
根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
解:应分(70-42)÷4=7,
∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.
故答案为:1.10、8.4.【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x,再求出∠BCG=30°,BG=BC=3,由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6,∠CBG=60°,∴∠BCG=30°,∴BG=BC=3,在△BCG中,由勾股定理可得:∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:解得:故答案为:8.4本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.11、70°【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.【详解】根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,∵∠A=70°,∴∠C=70°.故答案为:70°.此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.12、1【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.13、126°【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.【详解】解:如图,由题意可得:∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.【解析】分析:(1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.(2)①可分别从平均数和方差两方面着手进行比较;②可分别从平均数和中位数两方面着手进行比较;③可从具有培养价值方面说明理由.详解:解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:平均数方差中位数甲71.27乙75.47.5(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③选乙参加.理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.故答案为:(1)1.2,7,7.5;(2)①甲;②乙.点睛:本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.15、(I)见解析;(II)点的横坐标为12.【解析】
(I)将直线与直线联立方程求解,即可得到点A的坐标,然后可以在坐标系中标出点A;求出直线与x轴的交点B,连接AB即是直线y2.(II)用x表示出PQ的长度和Q点的横坐标,根据△POQ的面积等于60,用等面积法即可求出点Q的横坐标.【详解】(I)在中,令,则,解得:,∴与轴的交点的坐标为.由解得.所以点.过、两点作直线的图象如图所示.(II)∵点是直线在第一象限内的一点,∴设点的坐标为,又∥轴,∴点.∴.∵,又的面积等于60,∴,解得:或(舍去).∴点的横坐标为12.本题主要是考查了一次函数.16、【解析】
按顺序分别进行二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简,然后再按运算顺序进行计算即可得.【详解】+(π﹣3)0﹣()﹣1+|1﹣|==.本题考查了实数的混合运算,涉及了二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简等,熟练掌握各运算的运算法则是解题的关键.17、(1),y是x的一次函数;(2)点不在这个函数的图象上.【解析】
可设,把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型;把P点坐标代入函数解析式进行判断即可.【详解】解:设,时,,,,,即,故y是x的一次函数;,当时,,点P不在这个函数的图象上.本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.18、(1)证明见解析;(2)能,10;(3)t=或t=12,理由见解析.【解析】
(1)利用矩形的性质和直角三角形中所对应的直角边是斜边的一半进行作答;(2)证明平行四边形是菱形,分情况进行讨论,得到等式;(3)分别讨论若四边形AEOF是平行四边形时,则①∠OFE=90˚或②∠OEF=90˚,分情况讨论列等式.【详解】解:(1)∵四边形ABCD是矩形∴∠B=90˚在Rt△ABC中,∠ACB=90˚-∠BAC=30˚∵AE=2tCF=4t又∵Rt△COF中,∠ACB=30˚∴OF=CF=2t∴AE=OF(2)∵OF∥AB,AE=OF∴四边形AEOF是平行四边形当AE=AF时,平行四边形AEOF是菱形即:2t=60-4t解得:t=10∴当t=10时,平行四边形AEOF是菱形(3)①当∠OFE=90˚时,则有:EF∥BC∴∠AFE=∠ACB=30˚,∠AEF=∠B=90˚在Rt△AEF中,∠AFE=30˚∴AF=2AE即:60-4t=22t解得:t=②当∠OEF=90˚时,四边形AEOF是平行四边形则有:OE∥AC∴∠AFE=∠OEF=90˚在Rt△AEF中,∠BAC=60˚,∠AEF=30˚∴AE=2AF即:2t=2(60-4t)解得:t=12∴当t=或t=12时,△OEF为直角三角形.本题主要考查矩形的性质、平行四边形的证明应用、菱形的证明、直角三角形中角的综合运用,根据题目中不同的信息列出不同的等式进行解答.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=1.故答案为1.本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.20、78【解析】
直接利用加权平均数的求法进而得出答案.【详解】由题意可得:70×50%+90×30%+80×20%=78(分).故答案为:78此题考查加权平均数,解题关键在于掌握运算法则21、3【解析】
根据求平均数的方法先求出a,再把这组数从小到大排列,3处于中间位置,则中位数为3.【详解】a=3×5-(1+4+3+5)=2,把这组数从小到大排列:1,2,3,4,5,
3处于中间位置,则中位数为3.故答案为:3.本题考查中位数与平均数,解题关键在于求出a.22、1或3【解析】
数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值【详解】解:连接AC和BD交于一点O,四边形ABCD为菱形垂直平分AC,点P在线段AC的垂直平分线上,即BD上在直角三角形APO中,由勾股定理得如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3故答案为:1或3本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.23、1【解析】
根据极差的定义求解.【详解】解:数据:3,5,1,12,6,所以极差=12-3=1.
故答案为:1.本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.二、解答题(本大题共3个小题,共30分)24、10【解析】
试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.考点:1.勾股定理的运用;2.矩形性质.【详解】请在此输入详解!25、(1)△CDF是等腰三角形;(2)∠APD=45°.【解析】
(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同范本经典版本
- 消防车换季保养计划
- 【初中物理】光的折射透镜基础练习题 2024-2025学年苏科版八年级上册物理
- 现浇钢筋混凝土框架结构综合楼施工组织设计
- 全国初中物理专项复习:弹簧计算(学生版)
- 2024-2025学年人教版七年级数学上册同步练习:有理数的除法
- 股东会表决票-文书模板
- WPS办公应用(高级)习题及答案 ch3 WPS表格的高级应用
- 强化安全管理-创建平安校园
- 单选之冠词与数词(原卷版)
- 行业协会财务管理制度
- 领款单模板(B5的纸).xls
- 特种设备使用的安全现状与存在问题的思考
- 总公司与分公司合并报表编制举例
- 概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度
- 锦纶染色过程的问题与解决方法
- 土地租金发放表
- 医院水电安装施工方案
- 计算机网络考试重点整理
- 水泥搅拌桩机械进场安装验收记录表
- 高一物理的必修的一期中考试试卷解析告
评论
0/150
提交评论