2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】_第1页
2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】_第2页
2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】_第3页
2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】_第4页
2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点P(3,2m-1)在第四象限,则m的取值范围是()A. B. C. D.2、(4分)某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+203、(4分)下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个 B.2个 C.3个 D.4个4、(4分)已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为()A.(-2,3) B.(2,-3) C.(3,-2) D.(-3,2)5、(4分)用配方法解一元二次方程,此方程可化为的正确形式是()A. B. C. D.6、(4分)如图,若将图正方形剪成四块,恰能拼成图的矩形,设,则的值为()A. B. C. D.7、(4分)如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.128、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:_______________.10、(4分)直线y=2x+6经过点(0,a),则a=_____.11、(4分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012=.12、(4分)如图所示,一次函数y=kx+b的图象与x轴的交点为(-2,0①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.其中说法正确的有______(只写序号)13、(4分)学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.三、解答题(本大题共5个小题,共48分)14、(12分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.15、(8分)如图1,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,,,过点的直线交矩形的边于点,且点不与点、重合,过点作,交轴于点,交轴于点.(1)若为等腰直角三角形.①求直线的函数解析式;②在轴上另有一点的坐标为,请在直线和轴上分别找一点、,使的周长最小,并求出此时点的坐标和周长的最小值.(2)如图2,过点作交轴于点,若以、、、为顶点的四边形是平行四边形,求直线的解析式.16、(8分)一次函数y=kx+b()的图象经过点,,求一次函数的表达式.17、(10分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.18、(10分)如图,一块铁皮(图中阴影部分),测得,,,,.求阴影部分面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当_____时,分式的值为1.20、(4分)将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.21、(4分)分解因式:____________22、(4分)计算_________.23、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.二、解答题(本大题共3个小题,共30分)24、(8分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。25、(10分)已知,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.26、(12分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据点P在第四象限得出其纵坐标小于0,即2m-1<0,解之可得.【详解】解:∵点P(3,2m-1)在第四象限,

∴2m-1<0,

2m<1,故选:B.本题主要考查点的坐标和解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、A【解析】

根据题意找出等量关系:,列出方程即可.【详解】由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为,则三月份的营业额为,四月份的营业额为,四月份的营业额比三月份的营业额多20万元,则,故选A考查一元二次方程的应用,增长率问题,明确等量关系正确列出方程是解题关键.3、C【解析】试题分析:根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.解:(1)为了检测一批电视机的使用寿命适用抽样调查;(2)为了调查全国平均几人拥有一部手机适用抽样调查;(3)为了解本班学生的平均上网时间适用全面调查;(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;故选C.4、B【解析】试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).故选B.考点:平面直角坐标系5、D【解析】

方程常数项移到右边,两边加上9变形即可得到结果.【详解】解:方程移项得:x2-6x=-1,

配方得:x2-6x+9=8,即(x-3)2=8,

故选D.本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6、B【解析】

根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.【详解】依题意得,而,,,而不能为负,.故选:A.本题考查一元二次方程的应用,首先正确理解题目的意思,然后再根据题目隐含条件找到数量关系,然后利用等量关系列出方程解决问题.7、C【解析】∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=1,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=1.点睛:本题主要考查了反比例函数的比例系数k的几何意义以及相似三角形的判定与性质.从反比例函数y=(k≠0)的图象上任取一点向x轴或y轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.8、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.详解:∵众数为5,∴x=5,∴这组数据为:2,3,3,5,5,5,7,∴中位数为5,故选C.点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.解:(-)1=(-)(-)=1.

故答案为:1.10、6【解析】

直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.此题主要考查一次函数解析式的性质,熟练掌握即可得解.11、.【解析】令x=0,则;令y=0,则,解得.∴.∴.考点:探索规律题(图形的变化类),一次函数图象上点的坐标特征12、①②③.【解析】

一次函数及其应用:用函数的观点看方程(组)或不等式.【详解】由图象得:①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.故答案为:①②③.本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.13、250【解析】

由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【详解】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人),故答案为250.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.三、解答题(本大题共5个小题,共48分)14、甲车的速度是60千米/时,乙车的速度是90千米/时.【解析】

根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.【详解】设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,,解得,x=60,经检验,x=60是原方程的解.则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.15、(1)①直线解析式,②N(0,),周长的最小值为;(2).【解析】

(1)①利用矩形的性质确定A、B、C点的坐标,再利用等腰三角的性质确定,所以,确定P点的坐标,再根据A点的坐标确定确定直线AP的函数表达式.②作G点关于y轴对称点G'(-2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时ΔGMN周长的最小.(2)过P作PM⊥AD于M,先根据等腰三角形三线合一的性质证明DM=MA,再根据角角边定理证明ΔODE≌ΔMDP,根据全等三角形的性质求出点P、D的坐标,代入直线解析式得k=2,b=-2,所以直线PE的解析式为y=2x-2.【详解】(1)①∵矩形,∴,∵为等腰直角三角形∴∵∴∵∴∴∴设直线解析式,过点,点∴∴∴直线解析式②作点关于轴对称点,作点关于直线对称点连接交轴于,交直线于,此时周长的最小.∵∴直线解析式当时,,∴∵∴周长的最小值为(2)如图:作于∵∴且∴,且∴∵四边形是平行四边形∴又∵∴∴∴∵∴∴设直线的解析式∴∴直线解析式本题主要考查矩形的性质、等腰三角形的性质、角边角定理以及一次函数的应用.16、【解析】

用待定系数法求一次函数的解析式即可.【详解】解:依题意得解得∴一次函数的表达式为.故答案为.本题考查用待定系数法求一次函数的解析式,掌握方程组的解法是解题的关键.17、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】

(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.18、24【解析】

连接AC,首先利用勾股定理的逆定理判断三角形ABC和三角形ACD的形状,再根据阴影部分的面积等于三角形ACD的面积减去三角形ABC的面积即可.【详解】连接AC,在中,根据勾股定理,本题主要考查三角形的勾股定理和勾股定理的逆定理的应用,特别注意三角形逆定理的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、.【解析】

分式值为零的条件:分子为零且分母不为零,即且.【详解】分式的值为1且解得:故答案为.从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.20、(3,-1)【解析】

直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,

则平移后点的坐标是(-1+4,2-3),即(3,-1),

故答案为:(3,-1).此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.21、a(x+5)(x-5)【解析】

先公因式a,然后再利用平方差公式进行分解即可.【详解】故答案为a(x+5)(x-5).22、19+6【解析】

根据完全平方公式展开计算即可。【详解】解:18+6+1=19+6本题考查了用完全平方公式进行实数的计算,理解和掌握乘法公式是关键。23、1或.【解析】

分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题二、解答题(本大题共3个小题,共30分)24、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)【解析】

(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3,由图读出D1、D2、D3坐标即可.【详解】(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.25、(1)见解析;(2)①;②【解析】

(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;

(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;

②分三种情况讨论可知a与b满足的数量关系式.【详解】(1)证明:∵四边形是矩形,∴∴,∵垂直平分,垂足为,∴,∴,∴,∴四边形为平行四边形,又∵∴四边形为菱形,(2)①秒.显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论