版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年江苏省南通市如东县数学九年级第一学期开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.2、(4分)若解方程会产生增根,则m等于()A.-10 B.-10或-3 C.-3 D.-10或-43、(4分)在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是()A.甲班 B.乙班 C.丙班 D.丁班4、(4分)下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为 B.朝上的点数为C.朝上的点数为的倍数 D.朝上的点数不小于5、(4分)若关于的方程是一元二次方程,则的取值范围是()A. B. C. D.6、(4分)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个 B.2个 C.3个 D.4个7、(4分)如果,为有理数,那么()A.3 B. C.2 D.﹣28、(4分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.10、(4分)如图,在中,,是线段的垂直平分线,若,则用含的代数式表示的周长为____.11、(4分)为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.12、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.13、(4分)实数64的立方根是4,64的平方根是________;三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.15、(8分)解方程;.16、(8分)如图1,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图2,已知Rt△ABC中,∠ACB=90°,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.(2)如图3,在△ABC中,∠A<∠B<∠C.若△ABC的三个内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.17、(10分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.18、(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____20、(4分)若一元二次方程(为常数)有两个相等的实数根,则______.21、(4分)已知a+b=4,ab=2,则的值等于_____.22、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.23、(4分)已知是实数,且和都是整数,那么的值是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.(1)求点D的坐标;(2)求直线的解析表达式;(3)求△ADC的面积;(4)在直线上存在异于点C的另一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.25、(10分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.(1)求证:;(2)求的大小;(3)如图②,过点作交的延长线于点,求证:四边形为矩形.26、(12分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.(1)求三月份每瓶高档酒售价为多少元?(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.2、D【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.【详解】去分母得:2x-2-5x-5=m,即-3x-7=m,
由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,
把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,
故选:D.考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3、B【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.【详解】∵8.2<15<17.2<21.7,∴乙班的体育考试成绩最不稳定,故选:B.此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.4、D【解析】
分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为;D、朝上点数不小于2的可能性为.故选D.主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.5、A【解析】
本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-2≠1,m≠2,故选A.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.6、C【解析】试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,且BD>BC,∴AB<OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.7、A【解析】
直接利用完全平方公式化简进而得出a,b的值求出答案即可.【详解】解:∵=a+b,
∵a,b为有理数,
∴a=7,b=4,
∴a-b=7-4=1.
故选:A.此题主要考查了实数运算,正确应用完全平方公式是解题关键.8、B【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、丙【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,∴S2丙<S2甲<S2乙<S2丁,∴成绩最稳定的同学是丙.本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.10、2a+3b【解析】
由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AD=BD=BC=b,从而可求△ABC的周长.【详解】解:∵AB=AC,CD=a,AD=b,∴AC=AB=a+b,∵DE是线段AB的垂直平分线,∴AD=BD=b,∴∠DBA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠DBC=∠ABC−∠DBA=36°,∴∠BDC=180°−∠ACB−∠CBD=72°,∴BD=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b.故答案为:2a+3b.本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AD=BD=BC,本题属于中等题型.11、从中抽取的名中学生的视力情况【解析】
根据从总体中取出的一部分个体叫做这个总体的一个样本解答即可.【详解】解:这个问题中的样本是从中抽取的1000名中学生的视力情况,
故答案为从中抽取的1000名中学生的视力情况.本题考查的是样本的概念,掌握从总体中取出的一部分个体叫做这个总体的一个样本是解题的关键.12、(1,0)【解析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).13、【解析】
根据平方根的定义求解即可.【详解】.故答案为:.本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.三、解答题(本大题共5个小题,共48分)14、答案见解析【解析】分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.详解:∵O是AC的中点,且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四边形AECF是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.15、(1),;(2),.【解析】
根据解一元二次方程的方法因式分解法解方程即可.【详解】解:因式分解得,或,,;,,或,,.本题考查了解一元二次方程因式分解法,熟练掌握因式分解法是解题的关键.16、(1)详见解析;(2)【解析】
(1)根据已知条件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出结论;
(2)根据∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各内角的度数.【详解】解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,
∴CD=AB,
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似点;
(2)∵P是△ABC的内心,∴∠PBC=∠ABC,∠PCB=∠ACB,
∵△ABC的内心P是该三角形的自相似点,∴△BCP∽△ABC
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A=,
∴该三角形三个内角度数为:,,.本题考查了相似三角形的判定以及三角形的内心作法和作一角等于已知角,此题综合性较强,注意从已知分析获取正确的信息是解决问题的关键.17、见解析【解析】整体分析:用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.证明:∵四边形ABCD是平行四边形,∴AB//CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE//FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE//FB,∴四边形MENF是平行四边形.18、(1)10%;(2)见解析.【解析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.【详解】解:(1)服装权数是(2)选择李明参加比赛理由如下:李明的总成绩张华的总成绩选择李明参加比赛.考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥-3且x≠1【解析】
根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.【详解】解:由题意得:x+3≥0,且x-1≠0,
解得:x≥-3且x≠1.
故答案为x≥-3且x≠1.此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).20、±2【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【详解】∵方程有两个相等的实数根,∴△=b−4×1=b−4=0,解得:b=±2.故答案为:±2此题考查根的判别式,解题关键在于掌握判别式21、1【解析】
将a+b、ab的值代入计算可得.【详解】解:当a+b=4,ab=2时,===1,故答案为:1.本题主要考查分式的加减法,解题的关键是掌握整体代入思想的运用及分式加减运算法则、完全平方公式.22、1【解析】
根据勾股定理计算即可.【详解】解:最大的正方形的面积为1,由勾股定理得,正方形E、F的面积之和为1,∴正方形A、B、C、D的面积之和为1,故答案为1.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23、【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.【详解】由题意设m+=a(a为整数),=b(b为整数),∴m=a-,∴=b,整理得:
,∴b2-8=1,8a-ab2=-b,解得:b=±3,a=±3,∴m=±3-.故答案为±3-.本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..二、解答题(本大题共3个小题,共30分)24、(1)D(1,0);(2);(3);(4)P(6,3).【解析】
(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.【详解】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,∴P(6,3).本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.25、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.【解析】
(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.【详解】解:(1)证明:如图①中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM;(2)解:∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级数学(四则混合运算)计算题专项练习与答案汇编
- 电冰箱、空调器安装与维护电子教案 3.2 组装制冷系统
- 小学S版二年级语文下册教案设计
- DB11T 1249-2015 居住建筑节能评价技术规范
- 《电气控制系统设计与装调》教案 项目一-任务1:安全操作规程
- 剂量计产业深度调研及未来发展现状趋势
- 提供全球计算机网络用户接入服务行业经营分析报告
- 发光极管LE产业运行及前景预测报告
- 工业用X光装置产业运行及前景预测报告
- 人教版英语八年级上册 Unit10 期末训练-句子
- 英语语音教程ppt课件
- GS069电动工具直流调速电路
- 二十五项反措(汽机专业)
- (交通运输)智慧城市系列之智能交通系统(完整版)
- 全国教师信息管理系统信息变更修改操作方法
- 翻板滤池设计计算
- 理想别墅的数学_Colin R Microsoft W
- 电流互感器选用参考
- 附件2:跨境业务人民币结算收款说明
- 污水处理厂350KW分布式光伏发电项目初步设计方案
- 民航货物运输PPT课件
评论
0/150
提交评论