版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025千题百炼——高中数学100个热点问题(三):第83炼特殊值法解决二项式展开系数问题含答案第83炼特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设,①令,可得:②令,可得:,即:(假设为偶数),再结合①可得:(2)设①令,则有:,即展开式系数和②令,则有:,即常数项③令,设为偶数,则有:,即偶次项系数和与奇次项系数和的差由①③即可求出和的值二、典型例题:例1:已知,则的值为________思路:观察发现展开式中奇数项对应的指数幂为奇数,所以考虑令,则偶数项相同,奇数项相反,两式相减即可得到的值解:令可得:①令可得:②①②可得:答案:例2:已知,则的值为()A.B.C.D.思路:本题虽然恒等式左侧复杂,但仍然可通过对赋予特殊值得到系数的关系式,观察所求式子特点可令,得到,只需再求出即可。令可得,所以答案:B例3:设,则的值为()A.B.C.D.思路:所求,在恒等式中令可得:,令时,所以答案:A例4:若,则等于()A.B.C.D.思路:虽然展开式的系数有正有负,但与对应系数的绝对值相同,且均为正数。所以只需计算展开的系数和即可。令,可得系数和为,所以答案:A例5:若,则__________思路:所求表达式可变形为:,从而只需求出和系数和即可。令可得:,令可得:,所以答案:2014例6:若,且,则等于()A.B.C.D.思路:由可得或,解得,所求表达式只需令,可得答案:A例7:若,则()A.B.C.D.思路:所求表达式中的项呈现2的指数幂递增的特点,与恒等式联系可发现令,可得:,令可得:,所以,所以所求表达式变形为:,而,所以,从而表达式的值为答案:D例8:已知,若,则的值为()A.B.C.D.思路:在恒等式中令可得系数和,与条件联系可考虑先求出,令,可得,展开式中为最高次项系数,所以,,所以,即,解得答案:B例9:若,则的值是()A.B.C.D.思路:观察所求式子中项的系数刚好与二项展开式中所在项的次数一致,可联想到幂函数求导:,从而设,恒等式两边求导再令可解得的值,再在原恒等式中令计算出即可解:设令可得:而在中,令可得:答案:D例10:若等式对于一切实数都成立,则()A.B.C.D.思路:从所求表达式项的系数与展开式对应项联系起来可联想到在恒等式中两边同取不定积分。例如:,再利用赋值法令即可得到所求表达式的值解:,两边同取不定积分可得:令可得:令可得:答案:B小炼有话说:(1)本题可与例9作一个对照,都是对二项展开的恒等式进行等价变换。是求导还是取不定积分是由所求表达式项的系数与展开式系数对照所确定的。(2)在取不定积分时,本题有两个细节,一个是寻找的原函数,要注意其原函数求导时涉及复合函数求导,所以系数要进行调整。此类问题多是先猜函数的原型,再通过对所猜函数求导后与已知比较,调整系数;第二个是在求原函数时,要注意添加常数“C”,再利用赋值法求出的值即可第84炼古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用表示。3、基本事件特点:设一次试验中的基本事件为(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设为“出现点”,事件为“点数大于3”,则事件(3)所有基本事件的并事件为必然事件由加法公式可得:因为,所以4、等可能事件:如果一项试验由个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。5、等可能事件的概率:如果一项试验由个基本事件组成,且基本事件为等可能事件,则基本事件的概率为证明:设基本事件为,可知所以可得6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个(2)每个基本事件出现的可能性相等当满足这两个条件时,事件发生的概率就可以用事件所包含的基本事件个数占基本事件空间的总数的比例进行表示,即7、运用古典概型解题的步骤:①确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件②可通过计数原理(排列,组合)进行计算③要保证中所含的基本事件,均在之中,即事件应在所包含的基本事件中选择符合条件的二、典型例题:例1:从这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件为“6个自然数中取三个”,所以,事件为“一个数是另外两个数的和”,不妨设,则可根据的取值进行分类讨论,列举出可能的情况:,所以。进而计算出答案:例2:从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为()A.B.C.D.思路:设为“的所有组合”,则,设事件为“直线不经过第三象限”,则要求,所以,从而答案:A例3:袋中共有7个大小相同的球,其中3个红球,2个白球,2个黑球。若从袋中任取三个球,则所取3个球中至少有两个红球的概率是()A.B.C.D.思路:设为“袋中任取三球”,则,设事件为“至少两个红球”,所以,从而答案:B例4:设函数,若是从三个数中任取一个,是从五个数中任取一个,那么恒成立的概率是()A.B.C.D.思路:设事件为“从所给数中任取一个”,则,所求事件为事件,要计算所包含的基本事件个数,则需要确定的关系,从恒成立的不等式入手,恒成立,只需,而,当时,,所以当时,,所以,得到关系后即可选出符合条件的:共8个,当时,,所以符合条件,综上可得,所以答案:A例5:某人射击10次击中目标3次,则其中恰有两次连续命中目标的概率为()A.B.C.D.思路:考虑设为“10次射击任意击中三次”,则,设事件为“恰有两次连续命中”,则将命中分为两次连续和一次单独的,因为连续与单独的命中不相邻,联想到插空法,所以(剩下七个位置出现八个空,插入连续与单独的,共有种,然后要区分连续与单独的顺序,所以为),从而答案:A例6:已知甲袋装有6个球,1个球标0,2个球标1,3个球标2;乙袋装有7个球,4个球标0,1个球标1,2个球标2,现从甲袋中取一个球,乙袋中取两个球,则取出的三个球上标有的数码乘积为4的概率是____________思路:设为“两个袋中取出三个球”,则,事件为“三个球标记数码乘积为4”,因为,所以三个球中有两个2号球,1个1号球,可根据1号球的来源分类讨论,当1号球在甲袋时,有种,当1号球在乙袋时,则乙袋一个1号球,一个二号球,共有有种,即种。则答案:例7:四面体的顶点和各棱的中点共10个点,在其中任取4个点,则这四个点不共面的概率为()A.B.C.D.思路:设为“10个点中取4个点”,则,设事件为“4个点不共面”,若正面寻找不共面的情况较为复杂,所以考虑问题的对立面,即为“4个点共面”,由图可得四点共面有以下几种情况:(1)四个点在四面体的面上,则面上6个点中任意4个点均共面,则;(2)由平行线所产生的共面(非已知面),则有3对,即;(3)由一条棱上的三点与对棱的中点,即,所以共面的情况,所以,所以答案:D例8:袋子里有3颗白球,4颗黑球,5颗红球,由甲,乙,丙三人依次各抽取一个球,抽取后不放回,若每颗球被抽到的机会均等,则甲,乙,丙三人所得之球颜色互异的概率是()A.B.C.D.思路:事件为“不放回地抽取3个球”,则,基本事件为甲,乙,丙拿球的各种情况,且将这些球均视为不同元素。设所求事件“甲,乙,丙三人所得之球颜色互异”为事件,则先要从白球黑球红球中各取一个(),再分给三个人(三个元素全排列),所以,从而答案:D例9:甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若或,就称甲乙“心有灵犀”现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.思路:设为“甲想乙猜的所有情况”,则,设事件为“甲乙‘心有灵犀’”,可对甲想的数进行分类讨论:当时,可取的值为或;当时,,所以事件包含的基本事件数,所以答案:C例10:将1,2,3,4四个数字随机填入右方的方格中,每个方格中恰填一数字,但数字可重复使用,试问时间“A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中学国庆中秋节家校互动方案
- 电机与拖动 课程设计
- 2024年多功能空调设备租赁合同
- 2024年学校安全岗雇佣协议
- 高温条件下的道路施工方案
- 公司年度工作总结
- 2024年农业智能灌溉系统研发与实施合同
- 企业外包招聘平台合同
- 旅游业安全风险防控方案
- 2024年土地承包合同-环保新材料研发与生产基地
- 农村农产品加工行业市场需求分析及未来三年行业预测报告
- 识别界限 拒绝性骚扰 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 建立校园欺凌案发与处理的记录系统
- 3.8形状改变了(教学课件)科学二年级上册
- 2024下半年江苏无锡市属国企业招聘111人高频500题难、易错点模拟试题附带答案详解
- 第03讲:段落作用(练习)-2024年中考语文记叙文阅读讲与练(全国)原卷版
- 2024陕西煤业化工物资集团限公司招聘12人高频考题难、易错点模拟试题(共500题)附带答案详解
- 油库设计与管理智慧树知到答案2024年中国石油大学(华东)
- 2024年安徽省地勘行业职业技能大赛(地质调查员)考试题库(含答案)
- 2023-2024学年北京市通州区九年级(上)期中数学试卷【含解析】
- 速冻食品安全风险管控清单
评论
0/150
提交评论