2025千题百炼-高考数学100个热点问题(二):第47炼 多变量表达式范围-放缩消元法含答案_第1页
2025千题百炼-高考数学100个热点问题(二):第47炼 多变量表达式范围-放缩消元法含答案_第2页
2025千题百炼-高考数学100个热点问题(二):第47炼 多变量表达式范围-放缩消元法含答案_第3页
2025千题百炼-高考数学100个热点问题(二):第47炼 多变量表达式范围-放缩消元法含答案_第4页
2025千题百炼-高考数学100个热点问题(二):第47炼 多变量表达式范围-放缩消元法含答案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025千题百炼——高考数学100个热点问题(二):第47炼多变量表达式范围——放缩消元法含答案第47炼多变量表达式的范围——放缩消元法一、基础知识:在有些多变量表达式的题目中,所提供的条件为不等关系,则也可根据不等关系进行消元,从而将多变量表达式转化为一元表达式,便于求得最值1、放缩法求最值的理论基础:不等式的传递性:若,则2、常见的放缩消元手段:(1)抓住题目中的不等关系,若含有两个变量间的不等关系,则可利用这个关系进行放缩消元(2)配方法:通过利用“完全平方式非负”的特性,在式子中构造出完全平方式,然后令其等于0,达到消元的效果(3)均值不等式:构造能使用均值不等式的条件,利用均值不等式达到消元的效果(4)主元法:将多元表达式视为某个变量(即主元)的函数,剩下的变量视为常数,然后利用常规方法求得最值从而消去主元,达到消元的效果。3、放缩消元过程中要注意的地方:(1)在放缩过程中应注意所求最值与不等号方向的对应关系,例如:若求最小值,则对应的不等号为“”;若求最大值,则对应的不等号为“”。放缩的方向应与不等号的方向一致(2)对进行放缩消元后的式子,要明确是求其最大值还是最小值。放缩法求最值的基础是不等式的传递性,所以在求最值时要满足其不等号的方向一致。若将关于的表达式进行放缩消去,得到,例如,则下一步需要求出的最小值(记为),即,通过不等式的传递性即可得到。同理,若放缩后得到:,则需要求出的最大值(记为),即,然后通过不等式的传递性得到(3)在放缩的过程中,要注意每次放缩时等号成立的条件能够同时成立,从而保证在不等式中等号能够一直传递下去二、典型例题:例1:设集合中的最大元素与最小元素分别为,则的值为____________思路:考虑分别求出的最大值与最小值,先求的最大值,只需取最小,取最大:即,再求的最小值,由可知利用进行放缩,从而消去,可得:,再利用均值不等式可得:,所以的最小值,从而答案:例2:已知是任意三点,,则的最小值是_______思路:因为,所以结合不等号的方向可将消去,从而转化为关于的表达式:,然后可从出发,构造出与第一项互为倒数的性质以便于利用均值不等式解出最值:,从而有:,所以答案:例3:设实数满足,则的最大值为__________思路:由可联想到与的关系,即,所以,然后可利用进一步放缩消元,得,在利用即可得到最大值:,所以的最大值为,其中等号成立条件为:答案:小炼有话说:本题也可从入手,进行三角换元:,由可得,然后根据不等号的方向进行连续放缩,消去即可得到最值:例4:已知关于的一元二次不等式在实数集上恒成立,且,则的最小值为()A.B.C.D.思路:由不等式恒成立可得:,结合所求表达式和不等号方向可知更易于消去,即,所以,对于该其次分式可两边同时除以,可得:,令由可知从而将问题转化为求的最小值。,从而答案:D小炼有话说:本题的关键之处在于选择消去的元,如果选择,则因分式中含的项较多,消元会比较复杂,不利于求得最值。所以处理多变量表达式的最值时,选择消去合适的元是关键例5(2010,四川)设,则的最小值为()A.B.C.D.思路:表达式含变量个数较多,且没有等量条件消元,所以考虑式子中是否存在不等关系来减少变量个数,观察式子可发现存在完全平方式,即,从而消去了,得,然后根据分母特征:构造,由均值不等式得:,验证等号成立条件:,从而最小值为答案:D小炼有话说:本题在处理的最值时还可以从分式入手:,从而对分母利用均值不等式:消去,所以例6:已知正数满足,则的最小值是_______思路:所求表达式涉及3个变量,首先确定主元,通过观察可发现分母中的可与条件中的具备不等关系,而可用表示,且不等号的方向与所求一致,故考虑利用不等式进行放缩消元,进而得到关于的表达式求得最值解:,因为所以有(等号成立条件:)例7:设,且,则的最大值是____________思路:本题虽然有3个变量,但可通过进行消元,观察所求式子项的次数可知消去更方便,从而可得。然后可使用“主元法”进行处理,将视为主元,即但本题要注意的取值范围与相关,即,通过配方(或求导)可知的最大值在边界处取得,即,,从而达到消去的效果,再求出中的最大值即可解:设为的极小值点其中设若可得:例8:已知函数(1)求的解析式及单调区间(2)若不等式恒成立,求的最大值解:(1),代入可得:,令可得:,可知在上单调递增时,时,在单调递减,在单调递增(2)恒成立的不等式为:即设,令,即解不等式若,可解得在单调递减,在单调递增下面求的最大值令,设令,可解得在单调递增,在单调递减当时,可得当时,为增函数且时,,,与恒成立矛盾综上所述:的最大值为例9:已知函数,求的最小值思路:在多元表达式中不易进行变形消元,观察到变量存在二次函数的结构,所以考虑利用“主元法”,将视为自变量,视为参数,通过配方,并利用完全平方数的特征消去,从而得到关于的函数,然后求得最小值即可。解:设设,可知在单调递减,在单调递增恒成立令,即解不等式在单调递减,在单调递增即的最小值为例10:已知函数(1)若在上的最大值和最小值分别记为,求(2)设,若对恒成立,求的取值范围解:(1)①当时,可得在单调递增②当时,可得:在单调递减,在单调递增由可知:当时,当时,③当时,可得在单调递减综上所述:(2)不妨设由恒成立可知:恒成立即对任意的恒成立且即且①当时,由(1)可知无解②当,,即即另一方面:设恒成立在单调递增③当,,即解得:设恒成立在单调递增④当时,综上所述:第48炼多变量表达式的范围——数形结合一、基础知识:1、数形结合的适用范围:(1)题目条件中含有多个不等关系,经过分析后可得到关于两个变量的不等式组(2)所求的表达式具备一定的几何意义(截距,斜率,距离等)2、如果满足以上情况,则可以考虑利用数形结合的方式进行解决3、高中知识中的“线性规划”即为数形结合求多变量表达式范围的一种特殊情形,其条件与所求为双变量的一次表达式4、有些利用数形结合解决的题目也可以使用放缩消元的方式进行处理,这要看所给的不等条件(尤其是不等号方向)是否有利于进行放缩。二、典型例题例1:三次函数在区间上是减函数,那么的取值范围是()A.B.C.D.思路:先由减函数的条件得到的关系,,所以时,恒成立,通过二次函数图像可知:,由关于的不等式组可想到利用线性规划求得的取值范围,通过作图可得答案:D例2:设是定义在上的增函数,且对于任意的都有恒成立,如果实数满足不等式组,那么的取值范围是()A.B.C.D.思路:首先考虑变形,若想得到的关系,那么需要利用函数的单调性将函数值的大小转变为括号内式子的大小。由可得:,所以关于中心对称,即,所以:,利用单调递增可得:,所以满足的条件为①,所求可视为点到原点距离的平方,考虑数形结合。将①作出可行域,为以为圆心,半径为的圆的右边部分(内部),观察图像可得该右半圆距离原点的距离范围是,所以答案:C例3:已知函数是上的减函数,函数的图像关于点对称,若实数满足不等式,且,则的取值范围是_____思路:从所求出发可联想到与连线的斜率,先分析已知条件,由对称性可知为奇函数,再结合单调递减的性质可将所解不等式进行变形:,即,所以有。再结合可作出可行域(如图),数形结合可知的范围是答案:例4:已知是三次函数的两个极值点,且,则的取值范围是()A.B.C.D.思路:由极值点可想到方程的根,,依题意可得:的两根分别在中,由二次函数图像可知:,且所求可视为与定点连线的斜率,所以想到线性规划,通过作出可行域,数形结合可知的范围是答案:A例5:已知实系数方程的三个根可以作为一椭圆,一双曲线,一抛物线的离心率,则的取值范围是_________思路:以抛物线离心率为突破口可得是方程的根,设,则,从而,进而因式分解可知,所以椭圆与双曲线的离心率满足方程,设,则由椭圆与双曲线离心率的范围可知一根在,一根在,所以,由不等式组想到利用线性规划求的范围,即可行域中的点与原点连线斜率的范围。通过作图即可得到答案:例6:已知三个正实数满足,则的取值范围是______思路:考虑将条件向与有关的式子进行变形,从而找到关于的条件:,可发现不等式组只与相关,不妨设,则不等式组转化为:即,所求恰好为的范围,作出可行域即可得到的范围为答案:例7:设是不等式组表示的平面区域内的任意一点,向量,,若,则的最大值为()A.4B.3C.5D.6思路:本题的变量较多,首先要确定核心的变量。题目所求为的表达式。所以可视其为核心变量,若要求得的最值,条件需要关于的不等式组。所以考虑利用与的关系将原先关于的不等式组替换为关于的等式组即可解:设,代入到约束条件中可得:,作出可行域即可解出的最大值为答案:A例8:若实数满足条件,则的取值范围是_________思路:考虑所求式子中可变为,所以原式变形为:,可视为关于的二次函数,设,其几何含义为与连线的斜率,则由双曲线性质可知该斜率的绝对值小于渐近线的斜率,即,则答案:小炼有话说:本题也可以考虑利用三角换元。设,从而原式转化为:,由可知的范围为例9:(2016,天津六校联考)已知实数满足,则的取值范围是________思路:由,可建立直角坐标系,建立圆模型:,则圆上的点为,所求分式可联想到斜率,即可视为两点连线的斜率。数形结合可得:过的直线与圆有公共点时斜率的取值范围,设,即,解得:答案:例10:(201

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论