2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】_第1页
2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】_第2页
2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】_第3页
2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】_第4页
2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024-2025学年吉林省长春市德惠市九上数学开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低2、(4分)点在反比例函数的图像上,则的值为()A. B. C. D.3、(4分)如图,在矩形中,平分,交边于点,若,,则矩形的周长为()A.11 B.14 C.22 D.284、(4分)下列式子因式分解正确的是()A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16C.x2﹣x+6=(x+3)(x﹣2) D.x2﹣1=(x+1)(x﹣1)5、(4分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.6、(4分)一次函数的图象与轴的交点坐标是()A. B. C. D.7、(4分)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.68、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里 B.海里 C.3海里 D.5海里二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)因式分解:___________.10、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.11、(4分)若关于的一元二次方程的一个根是,则的值是_______.12、(4分)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数的图象上,且x1<x2<0,则y1____y2.(填“>”或“<”)13、(4分)当二次根式的值最小时,=______.三、解答题(本大题共5个小题,共48分)14、(12分)已知,直线与双曲线交于点,点.(1)求反比例函数的表达式;(2)根据图象直接写出不等式的解集.(3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.15、(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.16、(8分)计算:÷+×﹣.17、(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.18、(10分)(1)计算:;(2)当时,求代数式的值B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)反比例函数,在同一直角坐标系中的图象如图所示,则的面积为_____.(用含有、代数式表示)20、(4分)关于x的方程a2x+x=1的解是__.21、(4分)若不等式组无解,则a的取值范围是___.22、(4分)分解因式:x3-3x=______.23、(4分)如图,在平行四边形ABCD中,∠A=45°,BC=cm,则AB与CD之间的距离为________cm.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.25、(10分)计算或化简:(1)计算:(2)先化简,再求值:,其中.26、(12分)如图,为等边三角形,,相交于点,于点,(1)求证:(2)求的度数.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,故选C.2、B【解析】

把点M代入反比例函数中,即可解得K的值.【详解】解:∵点在反比例函数的图像上,∴,解得k=3.本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.3、C【解析】

根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;【详解】∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC=DE−CE=25−9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选C此题考查矩形的性质,解题关键在于求出DC=44、D【解析】

利用因式分解定义,以及因式分解的方法判断即可.【详解】解:A、x2+2x+2不能进行因式分解,故A错误;B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;C、,等式左右不相等,故C错误;D、x2﹣1=(x+1)(x﹣1),正确故选:D.本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.5、A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6、A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.7、A【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.8、B【解析】

连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【详解】解:如图,连接AC,由题意得,∠CBA=90°,∴AC==(海里),故选B.本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

直接提取公因式2,进行分解因式即可.【详解】2(a-b).故答案为:2(a-b).此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10、【解析】

根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴,整理得,,∴当时,故答案为:.本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.11、【解析】

把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.【详解】解:把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,解得a1=1,a2=-1,而a-1≠0,所以a=-1.故答案为:-1.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、>【解析】

根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.【详解】在反比例函数y=中,k=1>0,∴该函数在x<0内y随x的增大而减小.∵x1<x1<0,∴y1>y1.故答案为:>.本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.13、1【解析】

直接利用二次根式的定义分析得出答案.【详解】∵二次根式的值最小,∴,解得:,故答案为:1.本题主要考查了二次根式的定义,正确把握定义是解题关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)或;(3),【解析】

(1)将点A代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解;(2)首先联立两个函数,解得即可得出点B坐标,直接观察图像,即可得出解集;(3)首先过点作轴,过点作轴,交于点,根据平行线的性质,得出,得出,进而得出直线CD解析式.【详解】解:(1)根据题意,可得点将其代入反比例函数解析式,即得(2)根据题意,得解得∴点B(4,-2)∴直接观察图像,可得的解集为或(3)过点作轴,过点作轴,交于点根据题意,可得∴∠EAB=∠NOB=∠OCD,∠AEB=∠COD=90°,AB=CD∴∠ABE=∠CDO∴(ASA)∴则可得出直线CD为此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题.15、(1)证明见解析;(2)证明见解析.【解析】

(1)在□ABCD中,AB∥CD,AB=CD,∵E、F分别为边AB、CD的中点,∴DF=CD,BE=AB,∴DF=BE,DF∥BE,∴四边形BEDF为平行四边形,∴DE∥BF;(2)∵AG∥DB,∴∠G=∠DBC=90°,∴△DBC为直角三角形,又∵F为边CD的中点,∴BF=CD=DF,又∵四边形BEDF为平行四边形,∴四边形BEDF为菱形.本题主要考查了平行四边形的性质、菱形的判定,直角三角形中斜边中线等于斜边一半,解题的关键是掌握和灵活应用相关性质.16、.【解析】

先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4﹣.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.17、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析【解析】

(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【详解】(1)∵直线y=1x+1交x轴于A,交y轴于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:过点A作AH⊥DB,如图,∵A(-1,0),D(0,1)∴AD===AB,∵四边形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.18、(1);(2)【解析】

(1)根据题意先化简二次根式,再计算乘法,最后合并同类二次根式即可得;(2)由题意分别将x、y的值代入原式=(x+y)(x-y)+xy计算即可求出答案.【详解】解:当时,可得.本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】【分析】设A(m,n),则有mn=k1,再根据矩形的性质可求得点N(,n),点M(m,),继而可得AN=m-,AM=n-,再根据三角形面积公式即可得答案.【详解】如图,设A(m,n),则有mn=k1,由图可知点N坐标为(,n),点M(m,),∴AN=m-,AM=n-,∴S△AMN=AM•AN====,故答案为.【点睛】本题考查了反比例函数图象上的点的坐标特征、三角形面积的计算,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.20、.【解析】

方程合并后,将x系数化为1,即可求出解.【详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.21、a<1.【解析】

解出不等式组含a的解集,与已知不等式组无解比较,可求出a的取值范围.【详解】解不等式3x﹣2≥,得:x≥1,解不等式x﹣a≤0,得:x≤a,∵不等式组无解,∴a<1,故答案为a<1.此题考查解一元一次不等式组,解题关键在于掌握运算法则22、【解析】

先提取公因式x后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】x3-3x=x(x2-3),=.本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.23、1【解析】分析:过点D作DE⊥AB,根据等腰直角三角形ADE的性质求出DE的长度,从而得出答案.详解:过点D作DE⊥AB,∵∠A=45°,DE⊥AB,∴△ADE为等腰直角三角形,∵AD=BC=,∴DE=1cm,即AB与CD之间的距离为1cm.点睛:本题主要考查的是等腰直角三角形的性质,属于基础题型.解决这个问题的关键就是作出线段之间的距离,根据直角三角形得出答案.二、解答题(本大题共3个小题,共30分)24、(1)1:3;(1)见解析;(3)5:3:1.【解析】

(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论