版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年吉林省长春汽车经济技术开发区九年级数学第一学期开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中休息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.有以下说法:①快车速度是120千米/小时;②慢车到达乙地比快车到达乙地晚了0.5小时;③点C坐标(,100);④线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤);其中正确的个数有()A.1 B.2 C.3 D.42、(4分)若是关于的一元二次方程的一个解,则2035-2a+b的值()A.17 B.1026 C.2018 D.40533、(4分)某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为A.分钟 B.分钟 C.分钟 D.分钟4、(4分)函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)下列方程中是一元二次方程的是()A.x2﹣1=0 B.y=2x2+1 C.x+=0 D.x2+y2=16、(4分)下列各命题的逆命题成立的是()A.全等三角形的对应角相等 B.若两数相等,则它们的绝对值相等C.若两个角是45,那么这两个角相等 D.两直线平行,同位角相等7、(4分)下列式子中,属于最简二次根式的是()A. B. C. D.8、(4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,EC=2,则下列结论不正确的是()A.ED=2 B.AE=4C.BC= D.AB=8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.10、(4分)当x=4时,二次根式的值为______.11、(4分)把(a-2)根号外的因式移到根号内,其结果为____.12、(4分)如图,在▱ABCD中,,,则______.13、(4分)若分式的值为0,则x的值为_________;三、解答题(本大题共5个小题,共48分)14、(12分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)(2)求的值.15、(8分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。16、(8分)已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(2,4),反比例函数y=mx的图象经过AB的中点D,且与BC交于点E,顺次连接O,D,E(1)求反比例函数y=mx(2)y轴上是否存在点M,使得△MBO的面积等于△ODE的面积,若存在,请求出点M的坐标;若不存在,请说明理由;(3)点P为x轴上一点,点Q为反比例函数y=mx图象上一点,是否存在点P,点Q,使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q17、(10分)如图,△ABC中,D、E分别是AB、AC的中点,延长DE至点F,使EF=DE,连接CF.证明:四边形DBCF是平行四边形.18、(10分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.20、(4分)如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______21、(4分)平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.22、(4分)学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.23、(4分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.25、(10分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图可得,①快车的速度为:(400﹣280)÷(4.5﹣3.5)=120千米/小时,故①正确,②慢车的速度为:280÷3.5=80千米/小时,慢车到达乙地比快车到达乙地晚了:400÷80﹣4.5=0.5小时,故②正确,③点C的纵坐标是:400﹣120×(4.5﹣2)=100,横坐标是:0.5+100÷120=,即点C的坐标为(,100),故③正确,④设线段BC对应的函数表达式为y=kx+b,∵点B(0.5,0),点C(,100),∴,得,即线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤),故④正确,故选:D.本题主要考查一次函数的应用,能够根据题意结合图象获取有效信息是解题的关键.2、B【解析】
把x=2代入方程得2a-b=1009,再代入,可求得结果.【详解】因为是关于x的一元二次方程的一个解,所以,4a-2b-2018=0,所以,2a-b=1009,所以,=2035-(2a-b)=2035-1009=1026.故选B.本题主要考查一元二次方程的根的意义.3、C【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.【详解】首先表示一分钟后共打了分,则此人打长途电话的时间共是+1=分。故选C.本题考查列代数式,根据题意列出正确的分式是解题关键.4、B【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.5、A【解析】解:A.x2﹣1=0是一元二次方程,故A正确;B.y=2x2+1是二次函数,故B错误;C.x+=0是分式方程,故C错误;D.x2+y2=1中含有两个未知数,故D错误.故选A.6、D【解析】
先分别写出四个命题的逆命题,根据三角形全等的判定方法对A的逆命题进行判断;根据相反数的绝对值相等对B的逆命题进行判断;根据两个角相等,这两个角可为任意角度可对C的逆命题进行判断;根据平行线的判定定理对D的逆命题进行判断.【详解】A.“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以A选项错误;B.“若两数相等,则它们的绝对值相等”的逆命题为“若两数的绝对值相等,则这两数相等”,此逆命题为假命题,所以B选项错误;C.“若两个角是45°,那么这两个角相等”的逆命题为“若两个角相等,你们这两个角是45°”,此逆命题为假命题,所以C选项错误;D.“两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题,所以D选项正确.故选D.此题考查命题与定理,解题关键在于掌握掌握各性质定义.7、D【解析】
直接利用最简二次根式的定义分析得出答案.【详解】解:、,故此选项错误;、,故此选项错误;、,故此选项错误;、是最简二次根式,故此选项正确.故选:.此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.8、D【解析】
根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.【详解】∵∠ACB=90°,∠A=30°∴∵BE平分∠ABC,ED⊥AB,EC=2∴,,故选项A正确∴,故选项B正确∴,故选项C正确∴,故选项D错误故答案为:D.本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2或【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则,II.当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.【详解】解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.设AE=FC=x.由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.∵AE∥DG,∴∠AED=∠EDF.∴∠DEP=∠EDF.∴EF=DF.∴GF=DF﹣DG=x+1.在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).∴EF=2x+1=2×2+1=2.II.当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,在Rt△EFG中,∵EF2=EG2+FG2,∴(2x﹣1)2=42+(x﹣1)2,∴x=或﹣2(舍弃),∴EF=2x﹣1=故答案为:2或.本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.10、0【解析】
直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.11、-【解析】根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.故答案为-.12、.【解析】
先证明是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD是平行四边形,,,,,,即是等腰直角三角形,,故答案为:.本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明是等腰直角三角形是解决问题的关键.13、3【解析】
根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.故答案为:x=3.三、解答题(本大题共5个小题,共48分)14、(1),;(2)【解析】
(1)根据题意列出对应的代数式即可.(2)根据题意列出方程,求解即可.【详解】(1)由题意得,第二批衬衫进价为元,购进的数量为件.故答案为:;.(2)第一批利润:(元),第二批利润:(元),,整理得,(舍)增长率为本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15、(1)见解析;(2).【解析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.(2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC•CF=4.【详解】解:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AE=EF,AB=CF,∴四边形ABFC是平行四边形,∵∠AEC=2∠ABC=∠ABC+∠BAE,∴∠ABC=BAE,∴AE=BE∵AE=EF,BE=CE,∴AF=BC,∴平行四边形ABFC是矩形;(2)∵△AFD是等边三角形,∴∠AFC=60°,AF=DF=4,∴CF=CD=2,∵四边形ABFC是矩形,∴∠ACF=90°,∴AC=CF=2,∴四边形ABFC的面积=AC•CF=.此题主要考查了矩形的判定以及全等三角形的判定与性质等知识,根据已知得出AB=CF是解题关键.16、(1)y=4x;(2)M(0,3)或(0,﹣3);(3)存在;以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23,【解析】
(1)根据矩形的性质以及点B为(2,4),求得D的坐标,代入反比例函数y=mx中,即可求得m的值,即可得;
(2)依据D、E的坐标联立方程,应用待定系数法即可求得直线DE的解析式,然后△DOE面积即可求,再利用△MBO的面积等于△ODE的面积,即可解出m的值,从而得到M点坐标;
(3)根据题意列出方程,解方程即可求得Q【详解】(1)∵四边形OABC为矩形,点B为(2,4),∴AB=2,BC=4,∵D是AB的中点,∴D(1,4),∵反比例函数y=mx图象经过AB的中点D∴4=m1,m∴反比例函数为y=4x(2)∵D(1,4),E(2,2),设直线DE的解析式为y=kx+b,∴k+b=∴直线DE的解析式为y=﹣2x+6,∴直线DE经过(3,0),(0,6),∴△DOE的面积为3×6÷2﹣6×1÷2﹣3×2÷2=3;设M(0,m),∴S△AOM=12OM×|xB|=|m|∵△MBO的面积等于△ODE的面积,∴|m|=3,∴m=±3,∴M(0,3)或(0,﹣3);(3)存在;理由:令x=2,则y=2,∴E的坐标(2,2),∵D(1,4),以P、Q、D、E为顶点的四边形为平行四边形,当DE是平行四边形的边时,则PQ∥DE,且PQ=DE,∴P的纵坐标为0,∴Q的纵坐标为±2,令y=2,则2=4x,解得x令y=﹣2,则﹣2=4x,解得x∴Q点的坐标为(﹣2,﹣2);当DE是平行四边形的对角线时,∵D(1,4),E(2,2),∴DE的中点为(32设Q(a,4a)、P(x∴4a÷2=3,∴a=23,x=∴P(23故使得以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23本题考查的知识点是反比例函数的综合运用,解题关键是利用反比例函数的性质作答.17、证明见解析.【解析】分析:根据中位线的性质得出,结合DE=EF,从而得出DF和BC平行且相等,从而得出答案.详解:证明:∵D、E分别是AB、AC的中点,∴DE=BC,DE∥BC,又EF=DE,∴DF=DE+EF=BC,∴四边形DBCF是平行四边形.点睛:本题主要考查的是三角形中位线的性质以及平行四边形的判定定理,属于中等难度题型.了解中位线的性质是解决这个问题的关键.18、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.【解析】
(1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;(2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.【详解】(1)①令,则,解得,∴;令,则,∴;②当t=2时,,图形如下:(2)如图,∵四边形DCEF与四边形ABEF关于直线EF对称,,.,.,,,,即轴,,∴四边形DHEF为平行四边形.要使四边形DHEF为菱形,只需,,,.又,,,解得,∴当时,四边形DHEF为菱形;(3)连接AD,BC,∵AB和CD关于EF对称,∴,∴四边形ABCD为平行四边形.由(2)知,.,,∴四边形ABCD为矩形.∵,.,,∴四边形ABCD的面积为,解得,∴当时,四边形ABCD的面积为1.本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;
8~9的频率是6÷10=0.3;
10~11的频率是8÷10=0.4;
11~13的频率是4÷10=0.1.
故答案为.本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.20、【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.【详解】正△A1B1C1的面积是×22==,∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,∴面积的比是1:4,则正△A2B2C2的面积是×==;∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,∴面积是×==;依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,第n个三角形的面积是.故答案是:,.考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.21、﹣3≤xP≤3,且xp≠1.【解析】
因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;【详解】如图,设C关于y轴的对称点C′(﹣3,8).由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,所以点P只能在线段CC′上,所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.故答案为:﹣3≤xP≤3,且xp≠1.本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.22、250【解析】
由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【详解】400÷40%=1000(人),1000×(1-40%-35%)=1000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论