




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
迟恬2009329709国贸2班
第二章描述统计分析与参数假设检验
Exercise2-1
(1)
1、打开源文件Exercise文件中的Exercise2-1,双击inc,找到题中所给数据。
2、点ViewDescriptiveStatisticsHistogramandStat得到直方图
3、单击View选择——DescriptiveStatistics——StatsTable得到统计表
View][Proc][object]Properties][PrintRName[[Freeze]Sample](Genr][sheet](Graph][stats][ldent
INC
Mean31.27800S
Median25.70000
Maximum85.50000
Minimum6.420000
Std.Dev.22.37583
Skewness1.368930
Kurtosis4.071719
Jarque-Bera7.203714
Probability0.027273■
Sum625.5600
SumSq.Dev.9512.881
Observations20
id
(2)
单击ViewDescriptiveStatisticsStatisticByClassification得到分组表格,在分组变量处输入
“edu”得到分组统计描述。
即收入在12-16的教育年限分布人数最多。
□覆盟兴盘归阂fe?盘附
Mew][Prod[objecH|Properties][PrielRNGmeRFreeze][Sample][Genr][sheeH[Graph][^E7|[ldent
DescriptiveStatisticsforINC
CategorizedbyvaluesofEDU
Date:06/16/12Time:11:34
Sample:120
Includedobservations:20
EDUMeanStd.Dev.Obs.
1017.500003.3941132
1219.3371413.444897
1648.0142927.627251
1838.1000013.576452
2021.450005.3033012
All31.2780022.3758320
(3)
单击ViewDiscriptiveStatistics&TestsSimpleHypothesisTest”输入Mean15>Variance81得到
检验结果。
'iew][Proc][objecH[Properties][Print(Name正reeze]【Sample][Genr)|sheeH[Grdphgtats][ldenl:
HypothesisTestingforINC
Date:06/16/12Time:11:44
Sample:120
Includedobservations:20
TestofHypothesis:Mean=15.00000
SampleMean=31.27800
SampleStd.Dev.=22.37583
MethodValueProbability
^statistic3.253395—0.0042
TestofHypothesis:Variance=81.00000
SampleVariance=500.6779
MetiiodValueProbability
VarianceRatio117.4430—0.0000
(4)
1、单击ViewGraphTypeDistributionEmpiricalCDF得到经验累积分布图
2、单击ViewGraphTypeQuantile-Quantile得到序列Q-Q散点图
E]回区
[view][ProW[obj8ct][prop8rgs][PrintJ[NameUFre8zeJ6amp阳][qraph][^i?)Udent]
-20
0102030405060708090
QuantilesofINC
3^单击ViewDiscriptiveStatistics&TestsEmpiricalDistributionTesto由表可以看出其服从正
态分布。
00s
[viewJ[Proc[objecHFroperties||Print]|Nam^Freece][Sample[[GraphgtatsRldent|
EmpiricalDistributionTestforINC
Hypothesis:Normal
Date:06/16/12Time:11:53
Sample:120
Includedobservations:20
MethodValueAdj.ValueProbability
Lilliefors(D)0.246042NA0.0025
Cramer-vonMises(W2)0.1991330.2041110.0048
Watson(U2)0.1684750.1726870.0074
Anderson-Darling(A2)1.2068481.2588930.0028
Method:MaximumLikelihood-d.f.corrected(ExactSolution)
ParameterValueStd.Errorz-StatisticProb.
MU31.278005.0033896.2513630.0000
SIGMA22.375833.6298406.1644140.0000
Loglikelihood-90.03840Meandependentvar.31.27800
No.ofCoefficients2S.D.dependentvar.22.37583
(5)
在Eviews命令窗口中输入命令groupglincedu”按enter生成新的序列组
£il«EditQb”ctVit*trocQaickOfitionx量iad”削
groupg1incedu
O
(6)
1、双击gl打开序列组窗口,单击ViewDescriptiveStatisticscommonsample得到描述性统计
分析。
2、相关系数:
View|Proc|Object|Print|Name|Freeze|5ampte|Sheet|Stats|Spec|
CorrelationMatiix
INCEDU
INC1.0000000.338146
EDU0.3381461.000000
3、协方差:
CovarianceMatiix
INCEDU
INC475.644022.41720
EDU22,417209.240000
(7)
单击ViewGraphTypeScatterRegressionLine得到序列组gl的回归散点图。根据散点
图可以看出序列inc和edu成正相关关系,但并不是高度正相关关系。
Exercise2-2
(1)
1、打开源文件Exercise文件中的Exercise2-2,分别双击ggdp、gcs,找到题中所给数据。
2、分别单击ViewDescriptiveStatisticsHistogramandStat得到两个直方图
□器a?捌颛^^75遹更舒遨就的唠空芍施:!堡一日]0同
[view][Proc]|objecH[PropertiesJ[PrinH|Name帕eeze][Sample][^i7||sheet[[Graph
(2)
1、单击ViewDiscriptiveStatistics&TestsSimpleHypothesisTest分别输入Mean10.2、Mean7.6
得到下表。
Q@0
ViewProcObjectPropertiesPrintNameFruweidrripleGenrSheetGraphStatsIdent
HypothesisTestingforGGDP
Date:06/16/12Time:13:32
Sample:19922000
Includedobservations:9
TestofHypothesis:Mean=10.20000
SampleMean=10.23333
SampleStd.Dev.=2.628212
MethodValueProbability
t-statistic0.038049-0.9706
Meantestassumption
Meantestwilusea
knownstandard
deviationifsupplied.
Enters.d.
fknown:
[邺]|Cancel]
(3)1、关闭窗口,单击ObjectNewObjectGroup并将其命名为gl
2、对序列组的序列进行定义,第一列定义为"ggdp"按enter键,第二列定义为“gcs"按enter键。
□
|view||Proc||object||Print|[Save|[Details+/-1|show][Fetch]|store)|Delete||Genr]|SampleI
Range:19922000--9obsDisplayFilter:*I
Sample:19922000-9obs
固g1|口"如山Gl之工义支片
I£J.'C11jJ
I2gcs_______
0ggdp'「TVHot"jecFrinriif.jamefreeze;uerauirjportIranspose||tdir+/-1|brnpi+1-
0resid[EE
obsGGDPGCS
obsGGDPOCSQI
199214.2000012.90000
199313.500008.100000
199412.600004.300000
199510.500007.500000
19969.6000009.100000
19978.8000004200000
19987.8000005.500000
19997.1000007.900000
20008.0000009.100000
\Untitled/
QI
0
(4)
2、单击View选择TestofEquality选择Variance单击OK。得到方差检验结果。GGDP与GCS的方差
相等。
Mew][Proc][object)[Print][Name[Freeze115amplegheeHBtatsgpec]
TestforEqualityofVariancesBetweenSeries
Date:06/16/12Time:13:39
Sample:19922000
Includedobservations:9
MethoddfValueProbability
F-test(8.8)1.0820770.9139
Siegel-Tukey0.0883480.9296
Bartlett10.0117100.9138
Levene(1.16)0.0763590.7858
Brown-Forsythe(1.16)0.0395820.8448
CategoryStatistics
MeanAbs.MeanAbs.MeanTukey-
VariableCountStd.Dev.MeanDiff.MedianDiff.SiegelRank
GGDP92.6282122.1925932.1222229.666667
GCS92.7339431.9975311.9666679.333333
All182.9279192.0950622.0444449.500000
Bartlettweightedstandarddeviation:2.681599
3、同理,选择Mean得到均值检验结果,均值也相等。
MewllProcgbjecH[Print](Name[[Freeze]15ampIe回eetJBtatsgpec]
TestforEqualityofMeansBetweenSeries
Date:06/16/12Time:13:43
Sample:19922000
Includedobservations:9
MethoddfValueProbability
t-test162.0655600.0555
Satterthwaite-Welcht-test*15.975172.0655600.0555
AnovaF-test(1.16)4.2665380.0555
WelchF-test*(1,15.9752)4.2665380.0555
*Testallowsforunequalcellvariances
AnalysisofVariance
SourceofVariationdfSumofSq.MeanSq.
Between130.6805630.68056
Within16115.05567.190972
Total17145.73618.572712
CategoryStatistics
Std.Err.
VariableCountMeanStd.Dev.ofMean
GGDP-910.233332.6282120.876071
GCS97.6222222.7339430.911314
-Ali-188.9277782.9279190.690117
第三章简单线性回归分析
Exercise3-1
(1)1、打开源文件Exercise文件中的Exercise3-1。
2、点Quick选择EquationEstimation使用列表形式对方程进行设定。输入"peonscpdinc”得到下表。
从回归结果可以看出,自变量pdinc能够解释因变量peons93.6%的变化。Pdinc每增加一个单位,peons
的平均值增加0.75811,回归参数的t检验在统计上是显著的,说明估计的回归方程是正确的。
口白!回贬
Me®Proc[object][Print)[Name^Freeze]〔Estimate(ForecasHEtats|[Resids]
DependentVariable:PCONS
Method:LeastSquares
Date:06/16/12Time:13:50
Sample:131
Includedobservations:31
VariableCoefficientStd.Errort-StatisticProb.
C282.2434287.26490.9825200.3340
PDINC0.7585110.03692820.540260.0000
R-squared0.935685Meandependentvar5982.476
AdjustedR-squared0.933467S.D.dependentvar1601.762
S.E.ofregression413.1593Akaikeinfocriterion14.94788
Sumsquaredresid4950317.Schwarzcriterion15,04040
Loglikelihood-229.6922Hannan-Quinncriter.14,97804
F-statistic421.9023Durbin-Watsonstat1.481439
Prob(F-statistic)0.000000
3、单击name,输入eqOl,给方程命名
Nametoidentifyobject
24charactersmaximum,16
orfewerrecommended
Displaynameforlabelingtablesandgraphs(optional)
QK][Cancel|
匕联世螯逼丘&川」几£“上工天组的"外3-』兀,一目回国
[viewRProcJobject||Print||Name[Freeze[〔Estimate伍应叔恒矣][Resids)
DependentVariable:PCONS
Method:LeastSquares
Date:06/16/12Time:13:50
Sample:131
Includedobservations:31
VariableCoefficientStd.Errort-StatisticProb.
C282.2434287.26490.9825200.3340
PDINC0.7585110.03692820.540260.0000
R-squared0.935685Meandependentvar5982.476
AdjustedR-squared0.933467S.D.dependentvar1601.762
S.E.ofregression413.1593Akaikeinfocriterion14,94788
Sumsquaredresid4950317.Schwarzcriterion15.04040
Loglikelihood-229.6922Hannan-Quinncriter.14.97804
F-statistic421.9023Durbin-Watsonstat1.481439
Prob(F-statistic)0.000000
(2)1、单击ViewActual,Fitted,ResidualActual,Fitted,ResidualGraph得到因变量的实际值、
拟合值、残差值的折线图。
(3)1、单击Forecast输入“pconsf”得到预测结果。从图中可以看出,平均百分比误差MAPE=5.22,
希尔不等系数TheilIC=0.03,偏差率BP-0,方差率VP=0.02,协变率CP=0.96,从以上预测评价指标可
以看出模型预测精度高。
Forecast:F1
Actual:PCONS
Forecastsample:131
Includedobservations31
RootMeanSquaredError399.6094
MeanAbsoluteError305.3822
MeanAbs.PercentError5.217788
TheilInequalityCoefficient0.032331
BiasProportion0.000000
VarianceProportion0.016618
CovarianceProportion0.983382
(4)
单击ViewCoefficientTestWald-CoefficientRestrictions输入c(2)=0.75得至llWald系数检验结果。
[view][Proc[object][PrinH[NameRFreeze]〔Estimate[Forecastgtats^Resids]
WaldTest:
Equation:EQ01
TestStatisticValuedfProbability
F-statistic0.053123(1.29)0.8193
Chi-square0.05312310.8177
NullHypothesisSummary:
NormalizedRestriction(=0)ValueStd.Err.
-0.75+C(2)0.0085110.036928
Restrictionsarelinearincoefficients.
[View][Proc)[objbcHproperties][Print][Name[Freeze]DefaultLJSI
RESID01
Lastupdated:06/16/12-13:55
Modified:131//eq01.makeresid
1548.3316
2-172.9288
3-279.5766
4458.4026
5-12.16119
6111.4740
7-56.76591
8-447.5075
9131.6327
10-442.4763
11-455.5791
12-121.3674■
13-620.7974
14-537.8198
15-461.5020
16-514.7703
17177.5070
1814.32975
AnmeEARC
Exercise3-2
(1)
1>打开源文件Exercise文件中的Exercise3-2。
2^单击QuickEquationEstimation,输入investmentcproduct对方进行设定
3、从回归结果中可以看出自变量product解释了因变量均值95%的变化,说明回归方程拟合优度较好,
product的回归系数为3.4说明product每增加一个单位,因变量investment的均值增加3.4个单位,
回归系数的t检验在统计上显著,说明估计回归方程正确。
口直理近E。走赞近遴宜翁f宓i--u区
Mew][Proc)[objecH|PrinH[NameRFreeze]【EstimateRForecasH[stats][Resids]
Dependentvariable:INVESTMENT
Method:LeastSquares
Date:06/16/12Time:14:03
Sample:19811992
Includedobservations:12
VariableCoefficientStd.Errort-StatisticProb.
C-12.262562.482162-4.9402740.0006
PRODUCT3.4098810.25943713.143400.0000
R-squared0.945280Meandependentvar20.02333
AdjustedR-squared0.939808S.D.dependentvar5.032936
S.E.ofregression1.234782Akaikeinfocriterion3.410678
Sumsquaredresid15.24687Schwarzcriterion3.491496
Loglikelihood-18.46407Hannan-Quinncriter.3.380756
F-statistic172.7489Durbin-Watsonstat1.462938
Prob(F-statistic)0.000000
(2)单击ViewActual,Fitted,ResidualActual,Fitted,ResidualGraph得到因变量的实际值,拟
合值,残差值的折线图。
(3)
1单击ViewStabilityTestChowBreakpointTest输入1988,分割点检验结果。从回归结果看
LR检验结果在统计上不显著,所以接受无结构变化的原假设
n昌
Mew|【Proc]|objecH[PrinHMme[Freeze]归stimatv随缸8贪版也RResids]
'ChowBreakpointTest:1988
jNullHypothesis:Nobreaksatspecifiedbreakpoints
1Varyingregressors:Allequationvariables
=EquationSample:19811992
F-statistic1.350461Prob.F(2,8)0.3124
Loglikelihoodratio3.490659Prob.Chi-Square⑵0.1746
WaldStatistic2.700921Prob.Chi-Square(2)0.2591
2、单击ViewStabilityTestChowForecastTest输入1988,得至UChow预测检验结果。回归结
果表明LR检验在0.05的显著性水平下是显著的,所以应拒绝无结构变化的原假设。
□矍崩贽/爸f搭i碗多如二面逐:^^董:・
Mew]|Proc][object][PrinHMmc[Freeze]四imate帆缸由对如区][Resids]
ChowForecastTest:Forecastfrom1988to1992
F-statistic3.546879Prob.F(5,5)0.0955
Loglikelihoodratio18.17329Prob.Chi-Square(5)0.0027
TestEquation:
Dependentvariable:INVESTMENT
Method:LeastSquares
Date:06/16/12Time:14:07
Sample:19811987
Includedobservations:7
VariableCoefficientStd.Errort-StatisticProb.
C-11.532754.391068-2.6264100.0467
PRODUCT3.3096680.5217126.3438610.0014
R-squared0.889489Meandependentvar16.25429
AdjustedR-squared0.867387S.D.dependentvar2.248828
S.E.ofregression0.818934Akaikeinfocriterion2.673329
Sumsquaredresid3.353261Schwarzcriterion2.657875
Loglikelihood-7.356651Hannan-Quinncriter.2.482317
F-statistic40.24457Durbin-Watsonstat2.279734
Prob(F-statistic)0.001437
(4)
l、单击View——StabilityTest——RecursiveEstimates(OLSonly)——CUSUMTest,得到CUSUM检
验结果。
OutputCoefficientdisplaylist
◎覆cursiveResiduals?c(l)c(2)
OCUSUMTest
OCUSUMofSquaresTest
OQne-StepForecastTest
ON-StepForecastTest
ORecursiveCoefficients
□SaveResultsasSeriesOKCancel
2、单击ViewStabilityTestRecursiveEstimates(OLSonly)CUSUMofSquareTest得到
CUSUM的平方检验结果。
第四章非线性模型的回归估计方法
Exercise4-1
(1)
1、打开源文件Exercise文件中的Exercise4-1。
2、点击QuickEquationEstimation,numbercpopulation,得到回归模型。
从回归结果中可以看出,解释变量population解释了因变量number均值76.4%的变化。说明回归方程
拟合优度较好,解释变量的回归系数的t检验在5%的显著性水平下通过检验,说明回归方程正确。
0金川」卫旧岂义匚工"一J」J
Mew]回oc][objecH[PrieH|Name『FreezeJ[EstimateHForeDasHEtats]〔Resids]
DependentVariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:15
Sample:120
Includedobservations:20
VariableCoefficientStd.Errort-StatisticProb.
C-481.6892288.5747-1.6692010.1124
POPULATION5.0557630.6621867.6349650.0000
R-squared0.764067Meandependentvar1464.350
AdjustedR-squared0.750959S.D.dependentvar1212.582
S.E.ofregression605.1268Akaikeinfocriterion15,74339
Sumsquaredresid6591211.Schwarzcriterion15.84297
Loglikelihood-155.4339Hannan-Quinncriter.15.76283
F-statistic58.29270Durbin-Watsonstat1.685326
Prob(F-statistic)0.000000
(2)
单击ProcMakeResidualSeries生成残差序列。
□
Residualtype
@Ordinary
OK
Generalized
Nameforresidseries
residO1
卜询]回比][object]|Properties][PrinH[NameJ[Fre8ze]Default[$0代]同血+/・]
RES1
Lastupdated:06/16/12-14:16
Modified:120//eq01.makeresid
11662.684
2-199.8763
3894.9455
4-565.6683
5-350.9619
6-523.2186
7-27.18484
8-18.99905
9-429.2259
10-135.0994
11-409.7648
12-559.1665
13-146.7687
14-250.3897
15590.3358
16-48.14400
17-626.5457
18598.5664
19626.2318
20-81.75002
(3)
分别建立三个新序列seriesw1=1/@abs(resid01)seriesw2=1/@sqrt(population)series
w3=1/population
单击QuickEquationEstimation使用列表形式对方程进行设定。在输入框内输入"numberc
populationOption,选择WeightedLS/TSLS,在weight对话框中分别输入wlw2w3分别得到用
残差序列的绝对值倒数作为权重,用自变量序列平方根作为权重及用自变量序列的倒数作为权重重新
估计的回归方程。
从上述三个回归结果的R平方值及t检验结果判断得出以残差序列绝对值的倒数作为权重进行加权最
小二乘回归得到的结果拟合优度最高,并且t检验显著。
FileEditObjectViewProcQv
seriesw1=1/@sqrt(abs(res1))
Mew][Pro&[objecH[PrinQlName[Freeze]|Estimae随他曰竟版击|[Resids]
DependentVariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:36
Sample:120
Includedobservations:20
Weightingseries:W1
VariableCoefficientStd.Errort-StatisticProb.
C-194.3556204.0205-0.9526280.3534
POPULATION4.0898430.5515547.4151240.0000
WeightedStatistics
R-squared0753371Meandependentvar1329.136
AdjustedR-squared0.739669S.D.dependentvar1016.960
S.E.ofregression266.2018Akaikeinfocriterion14.10103
Sumsquaredresid1275541.Schwarzcriterion14.20060
Loglikelihood-139.0103Hannan-Quinncriter.14.12046
F-statistic54.98407Durbin-Watsonstat1.678825
Prob(F-statistic)0.000001
UnweightedStatistics
R-squared0.731070Meandependentvar1464.350
AdjustedR-squared0.716129S.D.dependentvar1212.582
S.E.ofregression646.0579Sumsquaredresid7513035.
Durbin-Watsonstat1.379292
seriesw1=1/@sqrt(abs(res1))
seriesw2=1/@sqrt(population)
SpecificationOptions
LS&TSLSoptions
__neierosKeaasucixy
I__Iconsistentcoefficient
,)White
Range:120-20obsNewey-West
Sample:120-20obs0WeightedLS/TSLS
(notavailablewith
eqO1Weight:w2|
numberARMAoptions
Startingcoefficient
res1OLS/TSLS
resid
[^1BackcastMAterms
Q[噩
[view]|Prod[objecH|PrinH[Name^Freeze][Estimate]〔Forecastgtats^Resids|
Dependentvariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:38
Sample:120
Includedobservations:20
Weightingseries:W2
VariableCoefficientStd.Errort-StatisticProb.
C227.7496164.21001.3869410.1824
POPULATION3.2126580.5229306.1435670.0000
WeightedStatistics
R-squared0.677092Meandependentvar1242.009
AdjustedR-squared0.659153S.D.dependentvar544.1256
S.E.ofregression452.4691Akaikeinfocriterion15.16196
Sumsquaredresid3685110.Schwarzcriterion15.26153
Loglikelihood-149.6196Hannan-Quinncriter.15.18139
F-statistic37.74342Durbin-Watsonstat1.584931
Prob(F-statistic)0.000008
UnweightedStatistics
R-squared0.662522Meandependentvar1464.350
AdjustedR-squared0.643773S.D.dependentvar1212.582
S.E.ofregression723.7266Sumsquaredresid9428042.
Durbin-Watsonstat1.260066
W3充当为-晅运izif尹&皿纯拄且更注、沪上先近“五工关以1
IQFileEditObjectViewProcQuickOptionsWindowHelp
View^Proc[object][PrinH〔Name帕eeze][EstimategorecasHEtnts][Resids]
DependentVariable:NUMBER
Method:LeastSquares
rixe£aityojeciviewrrocDate:06/16/12Time:14:42
seriesw1=1/@sqrt(abs(res1))Sample:120
Includedobservations:20
seriesw2=1/@sqrt(population)
Weightingseries:W3
;eriesw3=1/population
Variable
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东华宇工学院《普通生物学动物部分》2023-2024学年第二学期期末试卷
- 山东华宇工学院《城市公交规划与运营管理》2023-2024学年第二学期期末试卷
- 新星职业技术学院《燃烧学》2023-2024学年第二学期期末试卷
- 江西科技职业学院《磁性材料与器件》2023-2024学年第二学期期末试卷
- 南京交通职业技术学院《城市能源系统》2023-2024学年第二学期期末试卷
- 南通师范高等专科学校《遥感概论实验》2023-2024学年第一学期期末试卷
- 山东省兰陵县重点达标名校2025届中考模拟最后十套:化学试题(三)考前提分仿真卷含解析
- 公司计件工资劳动合同书
- 二零二五抖音发布协议书模板
- 二零二五版月子中心月嫂服务合同书
- 五年级下册数学课件 -4.1 用数对确定位置 ︳青岛版 (共20张PPT)
- 柏拉图分析案例
- 岩棉项目申报书_参考模板
- 二衬带模注浆施工方案
- 施工组织设计方案交底记录
- 《英语委婉语与忌语》PPT课件.ppt
- ISO9001-14001-2015内部审核检查表
- 风险和机遇应对措施有效性评审记录表副本
- 调查问卷设计-课件PPT
- 照金参观学习心得
- 井下电缆着火应急演练预案
评论
0/150
提交评论