版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖罗平县联考2025届数学八上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在等边中,,将线段沿翻折,得到线段,连结交于点,连结、以下说法:①,②,③,④中,正确的有()A.个 B.个 C.个 D.个2.下列方程组中,不是二元一次方程组的是()A. B. C. D.3.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有1.11111211千克,用科学记数法表示为()A.2.11×11-6千克 B.1.211×11-5千克 C.21.1×11-7千克 D.2.11×11-7千克4.直线上有三个点,,,则,,的大小关系是()A. B. C. D.5.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④6.现有纸片:4张边长为的正方形,3张边长为的正方形(),8张宽为,长为的长方形,用这15张纸片重新拼出一个长方形,那么该长方形较长的边长为()A. B. C. D.7.在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠B B.∠A C.∠C D.∠B或∠C8.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.29.下列计算正确的是().A. B. C. D.10.下列各数中,无理数是()A.﹣3 B.0.3 C. D.011.已知a、b、c是的三条边,且满足,则是()A.锐角三角形 B.钝角三角形C.等腰三角形 D.等边三角形12.长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2 B.b+3a+2a2 C.2a2+3a﹣b D.3a2﹣b+2a二、填空题(每题4分,共24分)13.计算:___.14.如图,点为线段上一点,在同侧分别作正三角形和,分别与、交于点、,与交于点,以下结论:①≌;②;③;④.以上结论正确的有_________(把你认为正确的序号都填上).15.如果,那么值是_____.16.如图,AD∥BC,E是线段AC上一点,若∠DAC=48°,∠AEB=80°,则∠EBC=_____度.17.如图,一个质点在第一象限及轴、轴上运动,第1次它从原点运动到,然后接着按图中箭头所示方向运动,即,那么第80次移动后质点所在位置的坐标是____________.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.三、解答题(共78分)19.(8分)(模型建立)(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;(模型应用)(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.20.(8分)从地到地全程千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为,在高速公路上行驶的速度为,一辆客车从地开往地一共行驶了.求、两地间国道和高速公路各多少千米.(列方程组,解应用题)21.(8分)如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.22.(10分)数学活动课上,同学们探究了角平分线的作法.下面给出三个同学的作法:小红的作法如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再过点O作MN的垂线,垂足为P,则射线OP便是∠AOB的平分线.小明的作法如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线.小刚的作法如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,则射线OP便是∠AOB的平分线.请根据以上情境,解决下列问题(1)小红的作法依据是.(2)为说明小明作法是正确的,请帮助他完成证明过程.证明:∵OM=ON,OC=OC,,∴△OMC≌△ONC()(填推理的依据)(3)小刚的作法正确吗?请说明理由23.(10分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?24.(10分)计算:(1)3a3b•(﹣1ab)+(﹣3a1b)1(1)(1x+3)(1x﹣3)﹣4x(x﹣1)+(x﹣1)1.25.(12分)如图,直线交轴于点,直线交轴于点,并且这两条直线相交于轴上一点,平分交轴于点.(1)求的面积.(2)判断的形状,并说明理由.(3)点是直线上一点,是直角三角形,求点的坐标.26.如图正比例函数y=2x的图像与一次函数的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】由△ABD≌△ACE,△ACE≌△ACM,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段沿翻折,∴AE=AM,∠CAE=∠CAM,∴,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM=60°,∴∠CMN=30°,∴在Rt△CMN中,,即,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM+∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.2、B【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:A、是二元一次方程组,故A正确;B、是三元一次方程组,故B错误;C、是二元一次方程,故C正确;D、是二元一次方程组,故D正确;故选:B.【点睛】本题考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.3、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.11111211=故选A.4、A【分析】先根据函数解析式判断出一次函数的增减性,再根据各点横坐标的特点即可得出结论.【详解】∵直线y=kx+b中k<0,∴y随x的增大而减小,∵1.3>-1.5>−2.4,∴.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.5、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.6、A【分析】先计算所拼成的长方形的面积(是一个多项式),再对面积进行因式分解,即可得出长方形的长和宽.【详解】解:根据题意可得:
拼成的长方形的面积=4a2+3b2+8ab,
又∵4a2+3b2+8ab=(2a+b)(2a+3b),且b<3b,
∴那么该长方形较长的边长为2a+3b.
故选:A.【点睛】本题考查因式分解的应用.能将所表示的长方形的面积进行因式分解是解决此题的关键.7、B【分析】根据三角形的内角和等于180°可知,∠C与∠B不可能为100°,根据全等三角形的性质可得∠A为所求角.【详解】解:假设,,与矛盾,假设不成立,则,故答案为B.【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.8、B【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE,又∵S△ABC=S△ABD+S△ACD,DE=2,AB=4,∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.9、A【解析】请在此填写本题解析!A.∵,故正确;B.∵,故不正确;C.∵a3与a2不是同类项,不能合并,故不正确;D.∵,故不正确;故选A.10、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,逐一判断即可得答案.【详解】A.﹣3是整数,属于有理数,故该选项不符合题意,B.0.3是有限小数,属于有理数,故该选项不符合题意,C.是无理数,故该选项符合题意,D.0是整数,属于有理数,故该选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,无限不循环小数为无理数.如π、8080080008…(每两个8之间依次多1个0)等形式,注意带根号的要开不尽方才是无理数.11、C【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.12、C【分析】根据长方形面积公式“长×宽=面积”,列出式子后进行化简计算即可。【详解】长方形的面积=长×宽,由此列出式子(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1.解:(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1,故选:C.【点睛】本题考查了用代数式表示相应的量,解决本题的关键是熟练掌握整式除法的运算法则。二、填空题(每题4分,共24分)13、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【详解】故答案是:【点睛】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.14、①②④【分析】根据等边三角形的性质可得CA=CB,CD=CE,∠ACB=∠DCE=60°,然后根据等式的基本性质可得∠ACD=∠BCE,利用SAS即可证出≌,即可判断①;根据全等三角形的性质,即可判断②;利用三角形的内角和定理和等量代换即可求出∠AOB,即可判断③,最后利用ASA证出≌,即可判断④.【详解】解:∵△ABC和△CDE都是等边三角形∴CA=CB,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠BCD=∠DCE+∠BCD∴∠ACD=∠BCE在和中∴≌,故①正确;∴∠CAD=∠CBE,,故②正确;∵∠OPB=∠CPA∴∠AOB=180°-∠OPB-∠CBE=180°-∠CPA-∠CAD=∠ACB=60°,故③错误;∵∠BCQ=180°-∠ACB-∠DCE=60°∴∠ACP=∠BCQ在和中∴≌,∴,故④正确.故答案为:①②④.【点睛】此题考查的是全等三角形的判定及性质和等边三角形的性质,掌握全等三角形的判定及性质和等边三角形的性质是解决此题的关键.15、1【分析】首先根据二次根式有意义的条件求出x,y的值,然后代入即可求出答案.【详解】根据二次根式有意义的条件可知解得∴故答案为:1.【点睛】本题主要考查代数式求值,掌握二次根式有意义的条件,求出相应的x,y的值是解题的关键.16、1【分析】根据平行线的性质求出∠ACB=∠DAC,再根据三角形外角的性质可得∠EBC的度数.【详解】解:∵AD∥BC,∠DAC=48°,∴∠ACB=∠DAC=48°,∵∠AEB=80°,∴∠EBC=∠AEB﹣∠ACB=1°.故答案为:1.【点睛】本题考查了平行线的性质以及三角形外角的性质,掌握基本性质是解题的关键.17、(27,27)【分析】先判断出走到坐标轴上的点所用的次数以及相对应的坐标,可发现走完一个正方形所用的次数分别为3,6,9,12…,其中奇次时位于x轴上,偶数次时位于y轴上,据此规律即可求出第80次移动后质点所在位置的坐标.【详解】第3次时到了(1,0);第6次时到了(0,2);第9次时到了(3,0);第12次到了(0,4);……∵,∴第80秒时质点所在位置的坐标是(27,27).故答案为:(27,27).【点睛】本题考查平面直角坐标系中坐标的变换,需要根据题意猜想规律,解题的关键是找到各点相对应的规律.18、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.三、解答题(共78分)19、(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(,).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则,解得:,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(,).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=,∴−2x+6=,∴D(,),此时,ED=PF=,AE=BF=,BP=PF−BF=<6,符合题意,综上所述,D点坐标为:(4,−2)或(,)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.20、、两地国道为90千米,高速公路为200千米.【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=1.5,根据等量关系列出方程组,再解即可.【详解】解:设、两地国道为千米,高速公路为千米.则方程组为:,解得:,答:A、B两地间国道和高速公路分别是90、200千米.【点睛】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.21、详见解析.【解析】根据已知条件利用角与角之间的关系来求得△DEF的各角分别为60度,从而得出其是一个等边三角形.【详解】∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.【点睛】本题考查了等边三角形的性质与判定,直角三角形两锐角互余等,熟练掌握相关的性质与定理是解题的关键.22、(1)等腰三角形三线合一定理;(2)CM=CN,边边边;(3)正确,证明见详解.【分析】(1)利用等腰三角形三线合一定理,即可得到结论成立;(2)利用SSS,即可证明△OMC≌△ONC,补全条件即可;(3)利用HL,即可证明Rt△OPM≌Rt△OPN,即可得到结论成立.【详解】解:(1)∵OM=ON,∴△OMN是等腰三角形,∵OP⊥MN,∴OP是底边上的高,也是底边上的中线,也是∠MON的角平分线;故答案为:等腰三角形三线合一定理;(2)证明:∵OM=ON,OC=OC,CM=CN,∴△OMC≌△ONC(边边边);∴∠MOC=∠NOC,∴OC平分∠AOB;故答案为:CM=CN,边边边;(3)小刚的作法正确,证明如下:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°,∵OM=ON,OP=OP,∴Rt△OPM≌Rt△OPN(HL),∴∠MOP=∠NOP,∴OP平分∠AOB;小刚的作法正确.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的判定,解题的关键是熟练掌握全等三角形的判定和性质,以及等腰三角形的性质进行证明.23、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24、(1)3a4b1;(1)x1﹣5.【解析】(1)首先计算乘方、乘法,然后计算加法,求出算式的值是多少即可.(1)首先计算乘方、乘法,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产销售争议答辩协议格式
- 2024年度苗木买卖简化协议模板
- 2024年智能门锁安装与维护服务协议
- 2024区域智能停车系统构建协议
- 秒杀产品合同范本
- 胶州房屋租赁合同范本
- 检验检测合同范本
- 拆迁赔偿合同范本
- 2024年商业合作协议模板2
- 车辆融资租赁新款协议模板2024
- 《门店选址策略》课件
- 私立民办初中学校项目运营方案
- 试卷印制服务投标方案(技术标)
- 1+X数字营销技术应用题库
- 俄罗斯礼仪完
- 小学六年级语文(小升初)修改病句专项练习题(含答案)
- 人教版六年级音乐上册全册教案
- 办税服务外包投标方案(技术标)
- 冷库是有限空间应急预案
- 基于PLC的机械手控制系统设计毕业设计
- 足软组织感染的护理查房
评论
0/150
提交评论