2025届西宁市重点中学八年级数学第一学期期末考试模拟试题含解析_第1页
2025届西宁市重点中学八年级数学第一学期期末考试模拟试题含解析_第2页
2025届西宁市重点中学八年级数学第一学期期末考试模拟试题含解析_第3页
2025届西宁市重点中学八年级数学第一学期期末考试模拟试题含解析_第4页
2025届西宁市重点中学八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届西宁市重点中学八年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,5 B.2,2,4 C.1,2,3 D.2,3,42.有一个数值转换器,原理如图所示,当输入的值为16时,输出的的值是()A. B.8 C.2 D.3.如图①,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)4.下列各式从左到右的变形正确的是()A. B.C. D.5.如果把分式中的、的值都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍 B.缩小为原来的一半C.扩大为原来的4倍 D.保持不变6.如图,在Rt△ABC中,∠B=90°,D是BC延长线上一点,∠ACD=130°,则∠A等于()A.40° B.50° C.65° D.90°7.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A. B. C. D.8.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4 B.4和5 C.5和6 D.6和79.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a10.如图,在Rt△ABC中,∠ACB=90°,D是AB中点,AB=10,则CD的长为()A.5 B.6 C.8 D.10二、填空题(每小题3分,共24分)11.如图,P为∠MBN内部一定点,PD⊥BN,PD=3,BD=1.过点P的直线与BM和BN分别相交于点E和点F,A是BM边上任意一点,过点A作AC⊥BN于点C,有=3,则△BEF面积的最小值是______.12.对于两个非零代数式,定义一种新的运算:x@y=.若x@(x﹣2)=1,则x=____.13.如图,△ABC中,AB=AC,BC=5,,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,最这个最小值为_______________14.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.15.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.16.如图,A.B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有______个.17.长、宽分别为、的长方形,它的周长为16,面积为10,则的值为____.18.求的值,可令,则,因此.仿照以上推理,计算出的值为______.三、解答题(共66分)19.(10分)如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求20.(6分)在平面直角坐标系中,的三个顶点的坐标分别为,与关于轴对称,与与与对应.(1)在平面直角坐标系中画出;(2)在平面直角坐标系中作出,并写出的坐标.21.(6分)(1)计算:(x-y)(y-x)2[(x-y)n]2;(2)解不等式:(1-3y)2+(2y-1)2>13(y+1)(y-1)22.(8分)等腰三角形中,,,点为边上一点,满足,点与点位于直线的同侧,是等边三角形,(1)①请在图中将图形补充完整:②若点与点关于直线轴对称,______;(2)如图所示,若,用等式表示线段、、之间的数量关系,并说明理由.23.(8分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?24.(8分)计算(1)(-3x2y2)2·(2xy)3÷(xy)2(2)8(x+2)2-(3x-1)(3x+1)(3)(π﹣3.14)0+|﹣2|﹣.(4)25.(10分)(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)先化简(-)÷,并回答:原代数式的值可以等于-1吗?为什么?26.(10分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,逐项分析解答即可.【详解】A、1+2<5,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选D.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2、D【分析】根据数值转换器的运算法则解答即可.【详解】解:当输入是16时,取算术平方根是4,4是有理数,再次输入,4的算术平方根是2,2是有理数,再次输入,2的算术平方根是,是无理数,所以输出是.故选:D.【点睛】本题考查了算术平方根的有关计算,属于常考题型,弄懂数值转换器的运算法则、熟练掌握算术平方根的定义是解题关键.3、D【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),

∴a2-b2=(a+b)(a-b).

故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.4、C【分析】由分式的加法法则的逆用判断A,利用约分判断B,利用分式的基本性质判断C,利用约分判断D.【详解】解:由,所以A错误,由,所以B错误,由,所以C正确,由,所以D错误.故选C.【点睛】本题考查分式加减运算的逆运算与分式的基本性质,掌握运算法则与基本性质是关键,5、D【分析】根据分式的基本性质,求得x,y的值均扩大为原来的2倍式子的值,与原式比较即可求解.【详解】把分式中的、的值都扩大为原来的2倍,可得,;∴把分式中的、的值都扩大为原来的2倍,分式的值不变.故选D.【点睛】本题考查了分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.6、A【详解】∠ACD=∠A+∠B,即130°=∠A+90°,解得∠A=40°.故选A.【点睛】本题考查三角形的一个外角等于与之不相邻的两个内角之和.7、A【解析】设安排x人加工A零件,加工B零件的是26-x,,所以选A.8、B【分析】估算出的范围,即可解答.【详解】解:∵<<,∴4<<5,∴这两个连续整数是4和5,

故选:B.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围.9、D【解析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.10、A【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【点睛】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.二、填空题(每小题3分,共24分)11、24【分析】如图,作EH⊥BN交BN于点H,先证得△BHE∼△BCA,然后设BH=t,进而得到EH=3t,HD=1-t,同理得△FPD∼△FEH,求得,进而求得,最后根据,令,得到.【详解】解:如图,作EH⊥BN交BN于点H,∵AC⊥BN,∴EH//AC,∴△BHE∼△BCA,∴设BH=t,则EH=3t,HD=BD-BH=1-t又∵PD⊥BN,∴EH//PD,∴△FPD∼△FEH,∴又∵∴解得:∴,∴,∴,令,则,而,∴∴△BEF面积的最小值是24,故答案为:24.【点睛】本题考查相似三角形的性质与判定综合问题,解题的关键是根据相似三角形的性质构建各边的关系,以及用换元法思想求代数式的最值.12、.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【详解】根据题中的新定义化简得:=1,去分母得:x﹣2+x2=x2﹣2x,解得:x=,经检验x=是分式方程的解.故答案为:.【点睛】此题考查解分式方程,解题关键在于利用转化的思想,解分式方程注意要检验.13、1【分析】根据三角形的面积公式即可得到AD=1,由EF垂直平分AB,得到点A,B关于EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【详解】解:∵AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,∴AD=1,∵EF垂直平分AB,∴点P到A,B两点的距离相等,∴AD的长度=PB+PD的最小值,即PB+PD的最小值为1,故答案为:1.【点睛】本题考查了轴对称——最短路线问题,线段的垂直平分线的性质,等腰三角形的性质的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.14、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.15、【解析】根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.16、9【解析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.17、80【解析】∵长、宽分别为a、b的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.18、【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题(共66分)19、【解析】连接BD,则可以计算△ABD的面积,根据AB、BD可以计算BD的长,根据CD,BC,BD可以判定△BCD为直角三角形,根据BC,BD可以计算△BCD的面积,四边形ABCD的面积为△ABD和△BCD面积之和.【详解】解:连接BD,在直角△ABD中,AC为斜边,且AB=BC=2,AD=1则BD==,,∴BC2+BD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABD+S△BCD=AB×AD+BD×BC=.=1+答:四边形ABCD的面积为1+.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了勾股定理的逆定理的运用,考查了直角三角形面积计算,本题中求证△BCD是直角三角形是解题的关键.20、(1)详见解析;(2)图详见解详,【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D、E、F的坐标.【详解】(1)如图所示:(2)如图所示:【点睛】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.21、(1)(x-y)2n+3;(2)y<1.1.【分析】(1)先把乘方化为同底数幂,再根据同底数幂的乘法法则求解,即可;(2)先利用完全平方公式和平方差公式,进行化简,再解一元一次不等式,即可.【详解】(1)(x-y)(y-x)2[(x-y)n]2=(x-y)(x-y)2(x-y)2n=(x-y)2n+3;(2)1-6y+9y2+4y2-4y+1>13y2-13,-10y>-11,y<1.1.【点睛】本题主要考查整数的混合运算以及解不等式,掌握同底数幂的乘法法则以及乘法公式,是解题的关键.22、(1)①画图见解析;②75°;(2)AB=BE+BD,证明见解析.【分析】(1)①根据题意直接画出图形;②根据对称性判断出AB⊥DE,再判断出∠DAE=60°,可以求出∠BAC,即可得出结论;(2)先判断出∠ADF=∠EDB,进而判断出△BDE≌△FDA,即可得出结论.【详解】解:(1)①根据题意,补全图形如图所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,AB⊥DE,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°-∠BAC)=75°,故答案为75°;(2)AB=BE+BD,证明如下:如图,在BA上取一点F,使BF=BD,DE与AB的交于H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°-∠ACB-∠ABC=20°,∴∠BAE=∠DAE-∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°-∠ACB-∠BDC=20°,∴∠ABD=∠ABC-∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°-∠BDC-∠BDF=40°=∠ADF,又∵DE=AD,∴△BDE≌△FDA(SAS),∴FA=BE,∴BA=BF+FA=BD+BE.【点睛】本题主要考查了轴对称的性质,三角形的内角和定理,等腰三角形的判定和性质,全等三角形的判定和性质,正确做出辅助线,构造出全等三角形是解本题的关键.23、(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120万元、180万元;(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【解析】(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,根据建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元,甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元,列方程组求解;

(2)根据(1)求出的值代入求解.【详解】解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x万元、y万元.由题意,得解得答:建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120、180万元.(2)3×120+6×180=1440(万元).答:乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,找出等量关系,列方程组求解.24、(1)72x5y5;(2)-x2+32x+33;(3)12-5;(4).【分析】(1)原式第一项利用积的乘方及幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;

(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论