2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】_第1页
2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】_第2页
2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】_第3页
2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】_第4页
2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列式子中,不可以取1和2的是()A. B. C. D.2、(4分)若(x-3)(x+5)是x2+px+q的因式,则q为()A.-15 B.-2 C.8 D.23、(4分)如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为()A.30° B.36° C.45° D.70°4、(4分)如图是由四个全等的直角三角形拼接而成的图形,其中,,则的长是()A.7 B.8 C. D.5、(4分)若,则下列式子成立的是()A. B. C. D.6、(4分)若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm7、(4分)中两条边的长分别为,,则第三边的长为()A. B. C.或 D.无法确定8、(4分)下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC; B.∠B=∠C;∠A=∠D,C.AB=CD,CB=AD; D.AB=AD,CD=BC二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)数据1、x、-1、2的平均数是,则这组数据的方差是_______.10、(4分)若关于的方程的解是负数,则的取值范围是_______.11、(4分)如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比,若AB=1.5,则DE=_____.12、(4分)已知:线段求作:菱形,使得且.以下是小丁同学的作法:①作线段;②分别以点,为圆心,线段的长为半径作弧,两弧交于点;③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;④连接,,.则四边形即为所求作的菱形.(如图)老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.13、(4分)将直线y=7x向下平移2个单位,所得直线的函数表达式是________.三、解答题(本大题共5个小题,共48分)14、(12分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.

请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.15、(8分)某童装网店批发商批发一种童装,平均每天可售出件,每件盈利元.经调查,如果每件童装降价元,那么平均每天就可多售出件.(1)设每件童装降价元,那么每天可售出多少件童装?每件童装的利润是多少元?(用含的代数式表示)(2)为了迎接“六一”儿童节,商家决定降价促销、尽快减少库存,又想保证平均每天盈利元,求每件童装应降价多少元?16、(8分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:505,504,505,498,505,502,507,505,503,506(1)求平均每袋的质量是多少克.(2)求样本的方差.17、(10分)已知四边形中,,垂足为点,.(1)如图1,求证:;(2)如图2,点为上一点,连接,,求证:;(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.18、(10分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图的折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是__________元;(2)第二档的用电量范围是__________;(3)“基本电价”是__________元/千瓦时;(4)小明家8月份的电费是1.5元,这个月他家用电多少千瓦时?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.20、(4分)如图,在平行四边形中,,.以点为圆心,适当长为半径画弧,交于点,交于点,再分别以点,为圆心,大于的长为半径画弧,两弧相交于点,射线交的延长线于点,则的长是____________.21、(4分)若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________

.22、(4分)计算:÷=_____.23、(4分)若代数式在实数范围内有意义,则实数x的取值范围是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.(1)求这两个函数解析式.(2)求的面积.(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。25、(10分)先化简,再求值:÷(x﹣),其中x=﹣1.26、(12分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据二次根式有意义的条件即可求出答案.【详解】A.中a≥0,所以a可以取1和2,故选项A不符合题意;B.中,即a≥1或a≤-1,所以a可以取1和2,故选项B不符合题意;C.中,-a+3≥0,即a≤3,所以a可以取1和2,故选项C不符合题意;D,当a取1和2时,二次根式无意义,故选项D符合题意.故选D.本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.2、A【解析】

直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选:A.此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.3、B【解析】

∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.考点:1.等腰三角形的性质;2.三角形内角和定理.4、C【解析】

由图易知EG与FG的长,然后根据勾股定理即可求出EF的长.【详解】解:如图,由题意可知:AE=BG=FC=5,BE=CG=12,∴EG=BE-BG=12-5=7,FG=CG-FC=12-5=7,∴在Rt△EGF中,EF==7.故选C.本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.5、B【解析】

由,设x=2k,y=3k,然后将其代入各式,化简求值即可得到答案【详解】因为,设x=2k,y=3k∴,故A错,故B对,故C错,故D错选B本题考查比例的性质,属于简单题,解题关键在于掌握由,设x=2k,y=3k的解题方法6、B【解析】试题分析:根据三角形的中位线定理即可得到结果.由题意得,原三角形的周长为,故选B.考点:本题考查的是三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.7、C【解析】

分b是直角边、b是斜边两种情况,根据勾股定理计算.【详解】解:当b是直角边时,斜边c==,

当b是斜边时,直角边c==,

则第三边c的长为和,

故选:C.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、C【解析】

根据平行四边形的判定方法逐项判断即可.【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;故选C.本题考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先由平均数的公式计算出x的值,再根据方差的公式计算.【详解】解:∵∴s2=.故答案为:.本题考查了方差的定义与平均数的定义,熟练掌握概念是解题的关键.10、且【解析】

把方程进行通分求出方程的解,再根据其解为负数,从而解出a的范围.【详解】把方程移项通分得,解得x=a−6,∵方程的解是负数,∴x=a−6<0,∴a<6,当x=−2时,2×(−2)+a=0,∴a=1,∴a的取值范围是:a<6且a≠1.故答案为:a<6且a≠1.此题主要考查解方程和不等式,把方程和不等式联系起来,是一种常见的题型,比较简单.11、4.1【解析】

根据位似图形的性质得出AO,DO的长,进而得出,,求出DE的长即可【详解】∵△ABC与△DEF位似,原点O是位似中心,∴,∵,∴,∴,∴DE=3×1.1=4.1.故答案为4.1.此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO的长12、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形【解析】

利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.【详解】解:由作法得AD=BD=AB=a,CD=CB=a,∴△ABD为等边三角形,AB=BC=CD=AD,∴∠A=60°,四边形ABCD为菱形,故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.13、y=7x-2【解析】

根据一次函数平移口诀:上加下减,左加右减,计算即可.【详解】将直线y=7x向下平移2个单位,则y=7x-2.本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.【解析】【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;(2)由频数分布表可知60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a、b的值,根据a、b的值补全图形即可;(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.【详解】(1)c=1-0.38-0.32-0.1=0.2,故答案为:0.2;(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,补全征文比赛成绩频数分布直方图如图所示:(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,∴全市获得一等奖征文的篇数为:1000×0.3=300(篇),答:全市获得一等奖征文的篇数为300篇.【点睛】本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.15、(1),;(2)应降价元.【解析】

(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件;(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】解:(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件.(2)依题意,得:(40-x)(1+2x)=110,解得:x1=10,x2=1.∵要尽快减少库存,∴x=1.答:每件童装应降价1元.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16、(1)平均数为504;(2)方差为5.8.【解析】

(1)根据算术平均数的定义计算可得;

(2)根据方差的定义计算可得.【详解】(1)平均数:(5+4+5-2+5+2+7+5+3+6)+500=504(2)方差:(1+0+1+36+1+4+9+1+1+4)=5.8本题主要考查方差,解题的关键是掌握方差的定义和计算公式.17、(1)见解析;(2)见解析;(3)【解析】

(1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.

(3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.【详解】(1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.∵AH⊥BC,

∴∠AHB=∠DFC=90°,

∵AD∥BC,

∴∠ADF+∠AFD=180°,

∴∠ADF=180°−90°=90°,

∴四边形AHFD为矩形,

∴AH=DF,

∵AH=DF,AB=CD,

∴△ABH≌△DCF(HL)

∴∠B=∠DCF,

∴AB∥CD.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,则∠CED=2∠ADE+2∠BAH=2α+2β.∵AB∥CD,AB=CD,

∴四边形ABCD为平行四边形,

∴∠B=∠ADC=90°−α,

∴∠EDC=∠ADC−∠ADE=90°−α−β,

在△EDC中,∠ECD=180°−∠CED−∠EDC=180°−(90°−α−β)−(2α+2β)=90°−α−β

∴∠EDC=∠ECD,

∴EC=ED.

(3)延长CM交DA延长线于点N,连接EN,∵AD∥BC,

∴∠ANM=∠BCM,

∵∠AMN=∠BMC、AM=MB,

∴△AMN≌△BMC(AAS)

∴AN=BC,

∵四边形ABCD为平行四边形,

∴AD=BC,

∴AD=AN,

∵AD∥BC,

∴∠DAH=∠HAD=90°,

∴EN=ED,

∵ED=EC,

∴EC=DE=EN,

∴∠ADE=∠ANE,∠ECM=∠ENM,

∵∠ADE+∠ECM=30°,

∴∠DEC=∠ADE+∠DNE+∠NCE,

=∠ADE+∠ANE+∠ENC+∠DCN

=2(∠ADE+∠ECM)=2×30°=60°.

∵EC=ED,

∴△ECD为等边三角形,

∴EC=CD,∠DCE=60°,延长PD到K使DK=EQ,

∵PD∥EC,

∴∠PDE=∠DEC=60°,∠KDC=∠ECD=60°,

∴∠KDC=∠DEC,EC=CD,DK=EQ,

∴△EQC≌△DKC(SAS),

∴∠DCK=∠ECQ,QC=KC,

∵∠ECQ+∠PCD=∠ECD−∠PCQ=60°−30°=30°,

∴∠PCK=∠DCK+∠PCD=30°=∠PCQ,

连接PQ.∵PC=PC,∠PCK=∠PCQ,QC=KC,

∴△PQC≌△PKC(SAS)

∴PQ=PK,

∵PK=PD+DK=PD+EQ=5+2=7,

作PT⊥QD于T,∠PDT=60°,∠TPD=30°,

∴TD=PD=,PT==,

在Rt△PQT中,QT=,∴QD=,

∴ED=8+2=10,

∴EC=ED=10,作CR⊥ED于R,∠DEC=60°∠ECR=30°,

∴ER=EC=5,RC=,RQ=5−2=3

在Rt△QRC中,CQ=.本题属于四边形综合题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考压轴题.18、(1)128;(2)182<x≤442;(3)2.6;(4)这个月他家用电422千瓦时.【解析】试题分析:(1)通过函数图象可以直接得出用电量为182千瓦时,电费的数量;(2)从函数图象可以看出第二档的用电范围;(3)运用总费用÷总电量就可以求出基本电价;(4)结合函数图象可以得出小明家8月份的用电量超过442千瓦时,先求出直线BC的解析式就可以得出结论.解:(1)由函数图象,得当用电量为182千瓦时,电费为:128元.故答案为128;(2)由函数图象,得设第二档的用电量为x千瓦时,则182<x≤442.故答案为182<x≤442;(3)基本电价是:128÷182=2.6;故答案为2.6(4)设直线BC的解析式为y=kx+b,由图象,得,解得:,y=2.9x﹣121.4.y=1.4时,x=422.答:这个月他家用电422千瓦时.一、填空题(本大题共5个小题,每小题4分,共20分)19、8a.【解析】

由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,又∵点E为AB边上的中点,OE=a,∴AB=2OE=2a,∴菱形ABCD的周长=2a×4=8a.故答案为:8a.“由菱形的性质得到AC⊥BD,从而得到∠AOB=90°,结合点E是AB边上的中点,得到AB=2OE=2a”是正确解答本题的关键.20、3【解析】

根据角平分线的作图和平行四边形的性质以及等腰三角形的判定和性质解答即可.【详解】由作图可知:BH是∠ABC的角平分线,

∴∠ABG=∠GBC,

∵平行四边形ABCD,

∴AD∥BC,

∴∠AGB=∠GBC,

∴∠ABG=∠AGB,

∴AG=AB=4,

∴GD=AD=AG=7-4=3,

∵平行四边形ABCD,

∴AB∥CD,

∴∠H=∠ABH=∠AGB,

∵∠AGB=∠HGD,

∴∠H=∠HGD,

∴DH=GD=3,

故答案为:3.此题考查角平分线的做法,平行四边形的性质,熟练根据角平分线的性质得出∠ABG=∠GBC是解题关键.21、x<-1【解析】

由图象可知一次函数y=kx+b的图象经过点(-1,0)、(0,-2).∴,解得,∴该一次函数的解析式为y=−2x-2,∵−2<0,∴当y>0时,x的取值范围是:x<-1.故答案为x<-1.22、1【解析】

直接利用二次根式的除法运算法则得出即可.【详解】解:÷==1.故答案为1.本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.23、x≠【解析】

根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:∵代数式在实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论