湖北省襄阳四中学市级名校2024届中考数学模拟预测题含解析_第1页
湖北省襄阳四中学市级名校2024届中考数学模拟预测题含解析_第2页
湖北省襄阳四中学市级名校2024届中考数学模拟预测题含解析_第3页
湖北省襄阳四中学市级名校2024届中考数学模拟预测题含解析_第4页
湖北省襄阳四中学市级名校2024届中考数学模拟预测题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省襄阳四中学市级名校2024届中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.=2 B.4﹣=1 C.=9 D.=22.给出下列各数式,①②③④计算结果为负数的有()A.1个 B.2个 C.3个 D.4个3.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.14.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣35.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40°C.60° D.70°6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A. B. C. D.7.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A. B. C. D.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C.4 D.69.的算术平方根是()A.4 B.±4 C.2 D.±210.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120° B.135° C.150° D.165°11.若a与5互为倒数,则a=()A. B.5 C.-5 D.12.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.14.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.15.一组数据:1,2,a,4,5的平均数为3,则a=_____.16.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.17.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.18.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化简,再求值:()÷,其中x=﹣1.20.(6分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.21.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.22.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.23.(8分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.24.(10分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的长.25.(10分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.26.(12分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=12(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=55

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项正确;B、原式=4-3=,所以B选项错误;C、原式==3,所以C选项错误;D、原式=,所以D选项错误.故选A.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2、B【解析】∵①;②;③;④;∴上述各式中计算结果为负数的有2个.故选B.3、A【解析】

由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.4、B【解析】

把代入方程组得:,解得:,所以a−2b=−2×()=2.故选B.5、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A.6、D【解析】

根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选D.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.7、B【解析】

匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.8、B【解析】

作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴,∵OC是△OAB的中线,∴,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=×=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.9、C【解析】

先求出的值,然后再利用算术平方根定义计算即可得到结果.【详解】=4,4的算术平方根是2,所以的算术平方根是2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10、C【解析】

这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.【详解】解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选C.【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).11、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.12、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A.“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题【详解】解:连接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案为.【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形14、(,2).【解析】

解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.15、1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.16、4π【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.17、S=1n-1【解析】观察可得,n=2时,S=1;

n=3时,S=1+(3-2)×1=12;

n=4时,S=1+(4-2)×1=18;

…;

所以,S与n的关系是:S=1+(n-2)×1=1n-1.

故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18、1【解析】

首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)(2)【解析】

(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,当x=﹣1时,原式==.【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20、(1);(2)①;②【解析】

(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.采访到种植C种树苗工人的概率为:=.【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.21、(1)证明见解析;(2)MC=.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【详解】(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.22、(1)50,108°,补图见解析;(2)9.6;(3).【解析】

(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.23、(1)y1=kx+80,y2=30x;(2)见解析.【解析】

(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算.【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.24、(1)见解析;(2).【解析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长.作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.25、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得,解得∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论